Description
1 online resource (55 unnumbered pages) : color illustrations
Core Metadata
| identifier | |
| blake2b |
bb72d2dc76b157e7ebe91d257f32e273472d555af6aa2c95b823494a030e9e8952ff9582aeadb49e04143d4754202f11878c8196d412b3cc12f1af178d670e2b
|
| id |
gpo45058/EPA-454_R-10-005.pdf
|
| format |
application/pdf
|
| size |
2235157
|
| dataset_id |
fdlp
|
| meta_url | |
| download_url |
Additional Metadata
JSON
{
"Added Entry": "United States. Environmental Protection Agency. Air Quality Assessment Division.",
"Bibliography": "Includes bibliographical references (pages 18-19).",
"CGP Record Link": "https://catalog.gpo.gov:443/F/?func=direct\u0026doc_number=000906551\u0026local_base=GPO01PUB",
"Content Type": "text",
"Description": "1 online resource (55 unnumbered pages) : color illustrations",
"Format": "online resource",
"General Note": "\"November 2010.\"\n\"EPA-454/R-10-005.\"\nTitle from title screen (viewed on Jan. 10, 2014).",
"Holdings": "All items",
"Internet Access": "https://purl.fdlp.gov/GPO/gpo45058",
"Item Number": "0483-E-22 (online)",
"Linking Field": "Print version: Air quality modeling technical support document (OCoLC)706803419",
"OCLC Number": "(OCoLC)867857684",
"Published": "Research Triangle Park, NC : U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Air Quality Assessment Division, 2010.",
"SuDoc Number": "EP 4.52:AI 7/59",
"Subject - LC": "Air quality -- Computer simulation.\nAir quality -- Mathematical models.\nAir quality management.\nOzone.",
"System Number": "000906551",
"Title": "Air quality modeling technical support document : ozone source apportionment application in support of the designation process for the ozone NAAQS.",
"URL": "http://www.epa.gov/scram001/reports/EPA-454_R-10-005.pdf"
}
Would you train on this document?
Document Viewer
text/plain
Air Quality Modeling Technical Support Document: Ozone Source Apportionment Application in Support of the Designation Process for the Ozone NAAQS EPA-454/R-10-005 November 2010 Air Quality Modeling Technical Support Document: Ozone Source Apportionment Application in Support of the Designation Process for the Ozone NAAQS U.S. Environmental Protection Agency Office of Air Quality Planning and Standards Air Quality Assessment Division Research Triangle Park, NC 27711 1 Contents 1 Background 2 Limitations 3 Derivation of Contribution Estimate 3.1 Primary Standard 3.2 Secondary Standard 4 Methodology Details 4.1 Identifying Violating Monitors 4.2 Selection of Sources: Counties 4.3 Photochemical Model Application 4.4 Emissions 4.5 Meteorological Inputs 4.6 Initial and Boundary Conditions 5 Operational Model Performance Description 6 References Appendix A Emissions Totals Appendix B Model Performance 2 1 Background This document describes the air quality modeling performed by EPA in support of the most recent ozone designations process. A national scale air quality modeling analysis was performed to estimate the impact of county specific anthropogenic NOX and VOC emissions on model estimated ozone concentrations. Source contribution is estimated for the primary and secondary forms of the ozone National Ambient Air Quality Standard (NAAQS). Air quality impacts are estimated with the Comprehensive Air Quality Model with Extensions (CAMx) model. CAMx simulates the numerous physical and chemical processes involved in the formation, transport, and destruction of ozone, particulate matter and air toxics. In addition to the CAMx model, the modeling platform includes the emissions, meteorology, and initial and boundary condition data which are inputs to this model. Photochemical grid models use state of the science numerical algorithms to estimate pollutant formation, transport, and deposition over a variety of spatial scales that range from urban to continental. Emissions of precursor species are injected into the model where they react to form secondary species such as ozone and then transport around the modeling domain before ultimately being removed by deposition or chemical reaction. Photochemical model source apportionment tracks the formation and transport of ozone from emissions sources and allows the estimation of contributions at receptors. This type of emissions apportionment is useful to understand what types of sources or regions are contributing to ozone estimated by photochemical grid models. Source apportionment is an alternative approach to zero-out modeling and has the advantage of being much more efficient with computational resources. For instance, to estimate the contribution from 20 source regions a total of 20 individual zero-out simulations would be needed compared to a single source apportionment simulation. The incremental run-time associated with the additional source region tracking is less than performing numerous iterative zero-out simulations. The Comprehensive Air-Quality Model with extensions is a three-dimensional Eularian “one-atmosphere” photochemical transport model that uses state of the science routines to model ozone and particulate matter formation and removal processes (Nobel, McDonald-Buller et al. 2001; ENVIRON 2008). CAMx contains a variety of ozone source apportionment tools, including the original ozone source apportionment tool (OSAT) and the anthropogenic pre-cursor culpability assessment (APCA) tool (ENVIRON 2008). Ozone source apportionment in CAMx tracks the contributions to each grid cell from emissions source groups, emissions source regions, initial conditions, and boundary conditions with reactive tracer species. Source apportionment tracers are treated using the standard model algorithms for vertical advection, vertical diffusion, and horizontal diffusion. Horizontal advective fluxes for each of the regular model species that make up nitrogen oxides (NOX) and volatile organic compounds (VOC) are combined and 3 normalized by a concentration based weighted mean. The estimated normalized fluxes are used to advect the tracer species rather than solving them with the standard model formulation to improve consistency between tracer and regular model concentrations (ENVIRON 2008). The deposition velocities for NOX tracers are the concentration weighted average of the deposition velocities for NO and NO2. The deposition velocities for VOC tracers are the concentration weighted average (done on a ppmC basis) of the deposition velocities for each of the CB05 species. Ozone tracers use the same deposition velocities as ozone (ENVIRON 2008). Separate ozone tracers are used in CAMx to track ozone formation that happens under NOX and VOC limited conditions. The ozone production regime indicator used in CAMx compares well with sensitivity to NOX and VOC estimated using the Decoupled Direct Method (DDM) (Dunker, Yarwood et al. 2002). The source apportionment methodology in CAMx compared favorably to sensitivity runs done using the Urban Airshed Model and DDM, particularly for higher estimated ozone concentrations (Yarwood 1996; Dunker, Yarwood et al. 2002). CAMx source apportionment compared well against the sensitivity simulations in terms of spatial impacts of emissions from source regions and the relative contributions for each emission regions (tags) to ozone. The APCA tool provides information that is most policy relevant when assessing regional and emission sector contribution to ozone formation compared to OSAT. When ozone is formed under VOC limited conditions due to biogenic VOC + anthropogenic NOX then OSAT attributes it to the biogenic VOC sources. When ozone is formed under NOXlimited conditions due to biogenic VOC + anthropogenic NOX then OSAT attributes it to the anthropogenic NOX sources. APCA is designed to provide more control strategy relevant information and recognizes that there are source categories such as biogenics that can not be controlled so the model only attributes ozone to biogenics when it is due to the interaction of biogenic VOC + biogenic NOX. In the case where ozone formed to biogenic VOC + anthropogenic NOX under VOC-limited conditions, OSAT attributes it to biogenic VOC, but APCA redirects the attribution to anthropogenic NOX. In NOXlimited conditions both OSAT and APCA attribute the ozone to anthropogenic NOX (ENVIRON 2008). 4 2 Limitations Source apportionment estimates are as good as the inputs to the photochemical model. Any deficiencies with the emissions or meteorological inputs may lead to source contribution estimates that may not fully characterize the source contribution mix at a receptor location. This application used a minimum of a complete year of meteorology to capture the variety of ozone formation regimes. However, it is possible that the meteorology used for these model applications may not represent all ozone formation regimes at every individual receptor location in the continental United States. 5 3 Derivation of Contribution Estimate 3.1 Primary Standard The steps used to estimate the source contribution at each receptor location for the primary 8-hr ozone NAAQS are shown below. More details on the model application methodology are available in the next subsection of this document. The policy relevant threshold is defined as the level of the new 8-hr ozone NAAQS. 1. Receptor locations are defined as ozone monitors in the photochemical modeling domain with a 2006-2008 design value exceeding the new 8-hr ozone NAAQS 2. 8-hr averaged source contributions related to the 8-hr average daily maximum model estimate at these receptor locations are extracted from model output files 3. Identify high modeled days at each receptor: predicted 8-hr max ozone > policy relevant threshold 4. Average daily 8-hr maximum contributions over all days with modeled ozone > policy relevant threshold at each receptor 5. The final contribution estimate is an 8-hr average with units of parts per billion (ppb) 3.2 Secondary Standard The steps used to estimate the final source contribution at each receptor location for the secondary ozone NAAQS are shown below. 1. Receptor locations are defined as ozone monitors in the photochemical modeling domain that were in operation during the time period modeled. 2. Daily index, monthly index, and the 3 month sum W126 ozone estimates at these receptor locations are extracted from standard model output files 6 3. “Pseudo-output” files are generated for each source region (or tag) by subtracting the source region hourly ozone contribution estimate from the standard model hourly ozone estimate 4. Daily index, monthly index, and the 3 month sum W126 ozone estimates at these receptor locations are extracted from “pseudo” model output files 5. Identify the highest 3 month sum based on standard model output at each monitor location 6. The source area (tag) contribution is the difference between the highest 3 month sum estimated from the standard model output and the corresponding 3 month sum estimated from the “pseudo” model output for that source area 7. The final contribution estimate is a W126 weighted 3 month sum in units of ppmhours 7 4 Methodology Details Additional information is provided in this section regarding the final source contribution estimate from each source area to each receptor. Also, information is given about the selection of source areas, emission preparation, photochemical model application, meteorological inputs, and photochemical model performance evaluation. 4.1 Identifying Violating Monitors (Receptors) Receptors are defined as individual model grid cells that contain a monitor with a design value for the 2006 to 2008 time period that is greater than the level of the 8-hr ozone NAAQS. Design values are estimated using methods described in 40 CFR part 50 Appendix P for a 75 ppb 8-hr ozone NAAQS and the proposed revision to Appendix P for alternative lower levels of the 8-hr ozone NAAQS. 4.2 Selection of Sources: Counties The sources selected for tracking with source apportionment include emissions from specific selected counties. Specific counties were selected if they comprised part of a CSA or CBSA that had a violating monitor for the new 8-hr ozone NAAQS. Counties tracked with source apportionment are shown in Figure 1. Each county is color coded to correspond to the modeling domain used for tracking that particular source area. Figure 1. Sources selected for tracking with source apportionment 8 Additional counties were identified for tracking with source apportionment by U.S. EPA Regional offices. The emissions tracked with source apportionment for each county include all VOC and NOX emissions except wildfires, prescribed fires, and biogenics. 4.3 Photochemical Model Application The CAMx photochemical model is applied for at least one entire calendar year using multiple model domains to track source group emissions. Source group emissions are tracked for ozone contribution using the APCA approach (ENVIRON 2008). CAMx version 5.01 is a freely available computer model that simulates the formation and fate of photochemical oxidants, primary and secondary PM concentrations, and air toxics, over regional and urban spatial scales for given input sets of meteorological conditions and emissions (Nobel, McDonald-Buller et al. 2001; Baker and Scheff 2007; Russell 2008). CAMx includes numerous science modules that simulate the emission, production, decay, deposition and transport of organic and inorganic gas-phase and particle-phase pollutants in the atmosphere. CAMx is applied with Regional Acid Deposition Model (RADM) aqueous phase chemistry (Chang, Brost et al. 1987), and Carbon Bond 05 (CB05) gasphase chemistry module (Gery, Whitten et al. 1989; ENVIRON 2008). All model domains (Table 1, Figure 1) were applied for the entire year of 2005 except for 12WUS1 and 12SEATTLE1, which wer only applied for 2006. The 12WUS2 domain was applied for both 2006 and 2005. All model domains are applied with a Lambert projection centered at (-97, 40) and true latitudes at 33 and 45. The specifications for each of the modeling domains are given in Table 1 and shown in Figure 1. Each domain is applied with square 12 km sized grid cells. Table 1. Model domain specifications (Cell size, X, and Y origins in units of km). Domain Name X origin Y origin # X cells # Y cells Cell size 12FLORIDA2 900 -1620 75 75 12 12SOUTH1 -444 -1620 140 90 12 12NE2 432 -288 156 108 12 12SE2 540 -972 120 72 12 12MW3 -288 -792 93 72 12 12WUS2 -2412 -972 170 150 12 12SEATTLE1 -2196 852 53 40 12 12OV1 468 -648 75 75 12 12UPMW1 -180 -36 114 75 12 12EUS1 -1008 -1620 279 240 12 12WUS1 -2412 -972 213 192 12 4.4 Emissions The emissions used for the photochemical modeling are based on the 2005 National Emission Inventory version 2 (modeling inventory scenario = 2005cm_05b) for stationary point, onroad and nonroad sources. Day specific biogenic emissions are 9 estimated using hourly gridded day-specific meteorology. Other area sources were grown from the 2002 National Emission Inventory to approximate the level of emissions expected in 2005 (Strum 2008). Average day fire emissions are used for this modeling, but were not tracked as part of any source area (county). Fire emissions are included as part of the non-tagged emissions in the source apportionment modeling. Oil and gas related emissions in the NEI were replaced by more recent inventories made available by the Western Regional Air Partnership for certain States in the western United States (BarIlan 2007). Table 2. Sectors Used in the Emissions Modeling Platform Platform Sector Tagged? 2005 NEI Sector Description and resolution of the data input to SMOKE IPM sector: ptipm Y Point 2005v2 NEI point source EGUs mapped to the Integrated Planning Model (IPM) model using the National Electric Energy Database System (NEEDS, 2006 version 3.02) database. Hourly files for continuous emission monitoring (CEM) sources are included only for the 2005 evaluation case. Dayspecific emissions for non-CEM sources created for input into SMOKE. Non-IPM sector: ptnonipm Y Point All 2005v2 NEI point source records not matched to the ptipm sector, annual resolution. Includes all aircraft emissions. Point source fire sector: avgfire N Fires Average wildfires and prescribed fires. Fire emissions based on average of 1996-2002. Agricultural sector: ag N Nonpoint NH3 emissions from NEI nonpoint livestock and fertilizer application, county and annual resolution. Area fugitive dust sector: afdust N Nonpoint PM10 and PM2.5 from fugitive dust sources from the NEI nonpoint inventory (e.g., building construction, road construction, paved roads, unpaved roads, agricultural dust), county and annual resolution. Remaining nonpoint sector: nonpt Y Nonpoint Primarily 2002 NEI nonpoint sources not otherwise included in other SMOKE sectors, county and annual resolution. Also includes updated Residential Wood Combustion emissions and year 2005 non-California Western Regional Air Partnership (WRAP) oil and gas “Phase II” inventory. Includes portable fuel container emissions from OTAQ. Nonroad sector: nonroad Y Mobile: Nonroad Monthly nonroad emissions from the National Mobile Inventory Model (NMIM) using NONROAD2005 version nr05c-BondBase for all states except California. Monthly emissions for California created from annual emissions submitted by the California Air Resources Board (CARB) for the 2005v2 NEI. locomotive, and non-C3 Y Mobile: Nonroad Year 2002 non-rail maintenance locomotives, and category 1 and category 2 commercial marine vessel 10 Platform Sector Tagged? 2005 NEI Sector Description and resolution of the data input to SMOKE commercial marine: alm_no_c3 (CMV) emissions sources, county and annual resolution. Unlike prior platforms, aircraft emissions are now included in the ptnonipm sector and category 3 CMV emissions are now contained in the seca_c3 sector C3 commercial marine: seca_c3 Y Mobile : Nonroad Annual point source formatted year 2005 category 3 (C3) CMV emissions, developed for the EPA rule called “Control of Emissions from New Marine Compression-Ignition Engines at or Above 30 Liters per Cylinder”, usually described as the Area (ECA) study, originally called SO2 (“S”) ECA. Onroad (NMIM-based) Y Mobile: onroad Three, monthly, county-level components: 1) Onroad emissions from NMIM using MOBILE6.2, other than for California. 2) California onroad, created using annual emissions submitted by CARB for the 2005v2 NEI. Biogenic: biog N N/A Hour-specific, grid cell-specific emissions generated from the BEIS3.14 model -includes emissions in Canada and Mexico. Other point sources not from the NEI: othpt N N/A Point sources from Canada’s 2006 inventory and Mexico’s Phase III 1999 inventory, annual resolution. Also includes annual U.S. offshore oil 2005v2 NEI point source emissions. Other nonpoint and nonroad not from the NEI: othar N N/A Annual year 2006 Canada (province resolution) and year 1999 Mexico Phase III (municipio resolution) nonpoint and nonroad mobile inventories, annual resolution. Other onroad sources not from the NEI: othon N N/A Year 2006 Canada (province resolution) and year 1999 Mexico Phase III (municipio resolution) onroad mobile inventories, annual resolution. Daily hour-specific biogenic emissions based on 2005 and 2006 meteorology data are generated using the BEIS 3.14 model. The BEIS model creates gridded, hourly emissions of CO, VOC, and NOX from vegetation and soils for the United States, Mexico, and Canada (Guenther, Geron et al. 2000). The inputs to BEIS include shortwave downward solar radiation and temperature data at 10 meters which were obtained from the CMAQ meteorological input files and land-use data from the Biogenic Emissions Landuse Database, version 3 (BELD3). BELD3 data provides data on the 230 vegetation classes at 1 km resolution over most of North America (Kinnee, Geron et al. 1997). All emissions were processed using the latest version of the Sparse Matrix Operator Kernel Emissions (SMOKE) Modeling System (Houyoux, Vukovich et al. 2000; UNC 2007). SMOKE has been enhanced with a feature that allows county or state specific emissions to be processed through the emissions model as specific unique pollutants. For 11 example, rather than run SMOKE for specific counties or states then merge the output files into a model ready emissions file, a new input file called the ‘GSTAG’ file matches specific emissions based on FIPS codes to additional emissions species that are tracked in the source apportionment photochemical model. This type of approach to source apportionment emissions processing is favorable because it is efficient in terms of processing time (compared to running SMOKE for each specific source group individually) and results in precursor emissions specific to the source group. The alternative is using a gridded “mask” field to define source groups, which has much less specificity about allocating emissions to the correct county when multiple county boundaries fall within the same grid cell. Total county emissions of NOX and VOC are presented in tabular form in the Appendix. Emission totals are only shown for counties selected to be tracked with source apportionment for contribution to receptor locations of interest. 4.5 Meteorological Inputs The gridded meteorological input data for the entire year of 2005 were derived from simulations of the Pennsylvania State University / National Center for Atmospheric Research Mesoscale Model. This model, commonly referred to as MM5, is a limitedarea, nonhydrostatic, terrain-following system that solves for the full set of physical and thermodynamic equations which govern atmospheric motions. Meteorological model input fields were prepared separately for each of the three domains shown in Figure 2 using MM5 version 3.7.4. Meteorological model output for the 36 km continental U.S. domain and 12 km eastern U.S. and 12 km western U.S. are translated to photochemical modeling domains shown in Figure 2 and Table 3. Meteorological modeling domains are several grid cells larger in the X and Y domain than the photochemical model domains. The photochemical model inputs for these domains were windowed to match the smaller 12 km domains listed in Table 1. Table 3. Geographic elements of domains used in photochemical modeling. Photochemical Modeling Configuration National Grid Western U.S. Fine Grid Eastern U.S. Fine Grid Map Projection Lambert Conformal Projection Grid Resolution 36 km 12 km 12 km Coordinate Center 97 deg W, 40 deg N True Latitudes 33 deg N and 45 deg N Dimensions 148 x 112 x 14 213 x 192 x 14 279 x 240 x 14 Vertical extent 14 Layers: Surface to 100 millibar level (see Table II-3) 12 Figure 2. Map of the photochemical modeling domain. The black outer box denotes the 36 km national modeling domain; the red inner box is the 12 km western U.S. grid; and the blue inner box is the 12 km eastern U.S. grid. All meteorological model runs were configured similarly. The selections for key MM5 physics options are shown below: • Pleim-Xiu PBL and land surface schemes • Kain-Fritsh 2 cumulus parameterization • Reisner 2 mixed phase moisture scheme • RRTM longwave radiation scheme • Dudhia shortwave radiation scheme Three dimensional analysis nudging for temperature and moisture was applied above the boundary layer only. Analysis nudging for the wind field was applied above and below the boundary layer. The 36 km domain nudging weighting factors were 3.0 x 104 for wind fields and temperatures and 1.0 x 105 for moisture fields. The 12 km domain nudging weighting factors were 1.0 x 104 for wind fields and temperatures and 1.0 x 105 for moisture fields. All sets of model runs were conducted in 5.5 day segments with 12 hours of overlap for spin-up purposes. All domains contained 34 vertical layers with an approximately 38 m deep surface layer and a 100 millibar top. The MM5 and CAMx vertical structures are shown in Table 4 and do not vary by horizontal grid resolution. The meteorological outputs from all three MM5 sets were processed to create model-ready inputs for CAMx using the MM5CAMx processor to derive the specific inputs. 13 Table 4. Vertical layer structure (heights are layer top). CAMx Layers MM5 Layers Sigma P Approximate Height (m) Approximate Pressure (mb) 0 0 1.000 0 1000 1 1 0.995 38 995 2 2 0.990 77 991 3 3 0.985 115 987 4 0.980 154 982 4 5 0.970 232 973 6 0.960 310 964 5 7 0.950 389 955 8 0.940 469 946 6 9 0.930 550 937 10 0.920 631 928 11 0.910 712 919 7 12 0.900 794 910 13 0.880 961 892 14 0.860 1,130 874 8 15 0.840 1,303 856 16 0.820 1,478 838 17 0.800 1,657 820 9 18 0.770 1,930 793 19 0.740 2,212 766 10 20 0.700 2,600 730 21 0.650 3,108 685 11 22 0.600 3,644 640 23 0.550 4,212 595 12 24 0.500 4,816 550 25 0.450 5,461 505 26 0.400 6,153 460 13 27 0.350 6,903 415 28 0.300 7,720 370 29 0.250 8,621 325 30 0.200 9,625 280 14 31 0.150 10,764 235 32 0.100 12,085 190 33 0.050 13,670 145 34 0.000 15,674 100 Before initiating the air quality simulations, it is important to identify the biases and errors associated with the meteorological modeling inputs. The 2005 MM5 model performance evaluations used an approach which included a combination of qualitative and quantitative analyses to assess the adequacy of the MM5 simulated fields. The qualitative aspects involved comparisons of the model-estimated synoptic patterns against observed patterns from historical weather chart archives. Additionally, the evaluations compared spatial patterns of estimated to observed monthly average rainfall and checked maximum planetary boundary layer (PBL) heights for reasonableness. Qualitatively, the model fields closely matched the observed synoptic patterns, which is not unexpected given the use of nudging. The operational evaluation included statistical comparisons of model/observed pairs (e.g., mean normalized bias, mean normalized 14 error, index of agreement, root mean square errors, etc.) for multiple meteorological parameters. For this portion of the evaluation, five meteorological parameters were investigated: temperature, humidity, shortwave downward radiation, wind speed, and wind direction. The three individual MM5 evaluations are described elsewhere (Baker 2009; Baker 2009; Baker 2009). It was ultimately determined that the bias and error values associated with all three sets of 2005 meteorological data were generally within the range of past meteorological modeling results that have been used for air quality applications. Meteorology generated from a prognostic meteorological model is used as input to the photochemical model used to track emissions for source contribution. Most areas in the continental United States have several observed days above 70 ppb in 2005 and 2006 (Figure 3). The photochemical model is applied for the entire year of 2005 for the central and eastern United States and for the entire years of 2005 and 2006 for the western United States. This is done to capture meteorological conditions conducive of ozone formation and account for meteorological factors that drive elevated ozone concentrations. Figure 3. Number of days in each county with monitored ozone over 70 ppb 4.6 Initial and Boundary Conditions Annual continental United States simulations using 36 km sized grid cells (see Figure 2) for calendar years of 2005 and 2006 are used to supply hourly boundary condition information for each of the 12 km modeling domains. The lateral boundary and initial species concentrations are provided by a three-dimensional global atmospheric chemistry model, the GEOS-CHEM model (standard version 7-04-11). The global GEOS-CHEM model simulates atmospheric chemical and physical processes driven by assimilated meteorological observations from the NASA’s Goddard Earth Observing System (GEOS). This model was run for 2005 with a grid resolution of 2.0 degree x 2.5 degree (latitude-longitude) and 30 vertical layers up to 100 mb. The predictions were used to provide one-way dynamic boundary conditions at three-hour intervals and an initial concentration field for the 36-km CAMx simulations. The 36 km coarse grid modeling was used as the initial/boundary state for all subsequent 12 km grid modeling scenarios. 15 5 Operational Model Performance Description Model estimates are compared to observations of ozone collected during 2005 and 2006. Ozone data from the AIRS Network is compared to model predictions to estimate operational model performance. Metrics used to describe model performance include mean bias and gross error (Boylan and Russell 2006). The bias and error metrics describe performance in terms of measured concentration units. The best possible performance is when the metrics approach 0. Bias is estimated as prediction-observation meaning a positive number might suggest a tendency toward over-prediction and a negative value might suggest a tendency toward under-prediction. Scatter-plots of all daily 8-hr ozone maximum prediction-observation pairs and spatial plots of average bias for model predicted ozone greater than 70 ppb are shown for each modeling domain in Appendix B. 16 6 References Baker, K., Dolwick, P. (2009). Meteorological Modeling Performance Evaluation for the Annual 2005 Continental U.S. 36-km Domain Simulation, US Environmental Protection Agency OAQPS. Baker, K., Dolwick, P. (2009). Meteorological Modeling Performance Evaluation for the Annual 2005 Eastern U.S. 12-km Domain Simulation. RTP, US Environmental Protection Agency OAQPS. Baker, K., Dolwick, P. (2009). Meteorological Modeling Performance Evaluation for the Annual 2005 Western U.S. 12-km Domain Simulation. U. EPA, US Environmental Protection Agency OAQPS. Bar-Ilan, A., Friesen, R., Pollack, A., Hoats, A. (2007). WRAP area source emissions inventory projections and control strategy evaluation phase II. C. P. Western Governor's Association, Suite 200, Denver, CO 80202, ENVIRON International Corporation. Boylan, J. W. and A. G. Russell (2006). "PM and light extinction model performance metrics, goals, and criteria for three-dimensional air quality models." Atmospheric Environment 40(26): 4946-4959. Chang, J. S., R. A. Brost, et al. (1987). "A 3-DIMENSIONAL EULERIAN ACID DEPOSITION MODEL - PHYSICAL CONCEPTS AND FORMULATION." Journal of Geophysical Research-Atmospheres 92(D12): 14681-14700. Dunker, A. M., G. Yarwood, et al. (2002). "Comparison of source apportionment and source sensitivity of ozone in a three-dimensional air quality model." Environmental Science & Technology 36(13): 2953-2964. ENVIRON (2008). User's Guide Comprehensive Air Quality Model with Extensions. Novato, ENVIRON International Corporation. Gery, M. W., G. Z. Whitten, et al. (1989). "A PHOTOCHEMICAL KINETICS MECHANISM FOR URBAN AND REGIONAL SCALE COMPUTER MODELING." Journal of Geophysical Research-Atmospheres 94(D10): 12925-12956. Guenther, A., C. Geron, et al. (2000). "Natural emissions of non-methane volatile organic compounds; carbon monoxide, and oxides of nitrogen from North America." Atmospheric Environment 34(12-14): 2205-2230. Houyoux, M. R., J. M. Vukovich, et al. (2000). "Emission inventory development and processing for the Seasonal Model for Regional Air Quality (SMRAQ) project." Journal of Geophysical Research-Atmospheres 105(D7): 9079-9090. Kinnee, E., C. Geron, et al. (1997). "United States land use inventory for estimating biogenic ozone precursor emissions." Ecological Applications 7(1): 46-58. 17 Nobel, C. E., E. C. McDonald-Buller, et al. (2001). "Accounting for spatial variation of ozone productivity in NOx emission trading." Environmental Science & Technology 35(22): 4397- 4407. Strum, M., Houyoux, M., Mason, R. (2008). Technical Support Document: Preparation of Emissions Inventories For the 2002-based Platform, Version 3, Criteria Air Pollutants. U. S. E. P. Agency. Research Triangle Park, NC. UNC (2007). SMOKE v2.3.2 User's Manual. Chapel Hill, University of North Carolina Institute of the Environment. Yarwood, G., Stoeckenius, T.E., W ilson, G., Morris, R.E., Yocke, M.A. (1996). Development of a methodology for source apportionment of ozone concentration estimates from a photochemical grid model. 98th AWMA Annual Meeting, Nashville, TN. APPENDIX A SOURCE AREA EMISSIONS FIPS State County NOX(TPY) VOC(TPY) 1001 AL Autauga 5,057 1,631 1003 AL Baldwin 9,362 10,925 1007 AL Bibb 941 821 1009 AL Blount 2,499 2,005 1017 AL Chambers 1,838 1,539 1021 AL Chilton 2,594 2,011 1027 AL Clay 911 580 1033 AL Colbert 20,171 2,986 1037 AL Coosa 796 830 1043 AL Cullman 3,508 3,819 1051 AL Elmore 2,504 3,380 1055 AL Etowah 6,180 4,107 1061 AL Geneva 1,170 1,197 1063 AL Greene 9,043 1,021 1065 AL Hale 1,000 912 1067 AL Henry 1,044 1,039 1069 AL Houston 4,311 4,585 1073 AL Jefferson 57,582 28,053 1077 AL Lauderdale 4,120 4,153 1079 AL Lawrence 4,985 2,000 1081 AL Lee 4,468 3,730 1083 AL Limestone 4,542 3,927 1085 AL Lowndes 1,626 1,124 1087 AL Macon 1,639 1,304 1089 AL Madison 11,414 10,310 1095 AL Marshall 3,519 5,160 1097 AL Mobile 42,420 14,815 1101 AL Montgomery 11,536 9,704 1103 AL Morgan 8,514 4,496 1113 AL Russell 4,814 2,032 1115 AL St Clair 6,306 3,199 1117 AL Shelby 38,427 7,393 1119 AL Sumter 2,471 1,082 1121 AL Talladega 4,289 3,815 1125 AL Tuscaloosa 9,871 7,699 1127 AL Walker 16,553 3,043 1133 AL Winston 1,263 1,467 4001 AZ Apache 26,352 3,354 4003 AZ Cochise 15,989 6,434 4005 AZ Coconino 45,933 7,505 4007 AZ Gila 1,856 4,404 4009 AZ Graham 996 1,613 4011 AZ Greenlee 469 199 4012 AZ La Paz 3,003 2,407 4013 AZ Maricopa 99,446 88,995 4015 AZ Mohave 12,716 12,241 4017 AZ Navajo 24,950 5,008 4019 AZ Pima 30,349 29,506 4021 AZ Pinal 12,425 7,395 4023 AZ Santa Cruz 1,496 1,427 4025 AZ Yavapai 14,238 7,086 4027 AZ Yuma 9,211 6,800 5007 AR Benton 11,161 6,282 5009 AR Boone 1,282 1,636 5025 AR Cleveland 777 416 5035 AR Crittenden 5,824 3,824 5045 AR Faulkner 3,829 4,714 FIPS State County NOX(TPY) VOC(TPY) 5053 AR Grant 783 799 5069 AR Jefferson 23,253 3,053 5079 AR Lincoln 991 594 5085 AR Lonoke 3,416 2,621 5101 AR Newton 245 824 5105 AR Perry 347 640 5113 AR Polk 871 1,088 5119 AR Pulaski 18,407 18,551 5125 AR Saline 2,950 2,471 5131 AR Sebastian 5,285 4,141 5143 AR Washington 7,318 6,684 5145 AR White 6,196 2,965 6001 CA Alameda 43,316 26,321 6003 CA Alpine 194 219 6005 CA Amador 2,016 1,744 6007 CA Butte 9,199 7,004 6009 CA Calaveras 1,873 3,125 6011 CA Colusa 4,036 1,643 6013 CA Contrasta 37,566 19,608 6015 CA Del Norte 2,510 1,279 6017 CA El Dorado 3,843 6,001 6019 CA Fresno 41,167 23,906 6021 CA Glenn 4,081 1,776 6023 CA Humboldt 15,011 5,281 6025 CA Imperial 13,554 6,949 6027 CA Inyo 1,857 1,650 6029 CA Kern 89,387 32,413 6031 CA Kings 10,565 3,634 6033 CA Lake 2,693 4,158 6035 CA Lassen 2,165 2,079 6037 CA Los Angeles 287,426 175,408 6039 CA Madera 12,180 4,684 6041 CA Marin 6,863 6,227 6043 CA Mariposa 713 1,737 6045 CA Mendocino 15,058 4,592 6047 CA Merced 20,261 7,360 6049 CA Modoc 1,348 1,043 6051 CA Mono 1,088 923 6053 CA Monterey 16,655 12,966 6055 CA Napa 4,230 3,889 6057 CA Nevada 5,027 4,541 6059 CA Orange 64,995 56,760 6061 CA Placer 14,130 9,597 6063 CA Plumas 11,422 2,592 6065 CA Riverside 67,696 33,171 6067 CA Sacramento 30,405 25,275 6069 CA San Benito 4,577 1,704 6071 CA San Bernardino 121,128 45,581 6073 CA San Diego 78,452 66,071 6075 CA San Francisco 32,180 13,083 6077 CA San Joaquin 38,612 15,970 6079 CA San Luis Obispo 16,025 8,428 6081 CA San Mateo 19,342 13,466 6083 CA Santa Barbara 53,349 14,680 6085 CA Santa Clara 38,142 31,503 6087 CA Santa Cruz 8,028 7,917 6089 CA Shasta 13,646 8,011 FIPS State County NOX(TPY) VOC(TPY) 6091 CA Sierra 371 1,133 6093 CA Siskiyou 7,191 3,422 6095 CA Solano 17,204 9,494 6097 CA Sonoma 14,128 11,506 6099 CA Stanislaus 20,311 11,390 6101 CA Sutter 7,141 3,417 6103 CA Tehama 6,900 2,816 6105 CA Trinity 1,093 1,197 6107 CA Tulare 17,430 11,580 6109 CA Tuolumne 3,079 4,114 6111 CA Ventura 32,980 19,917 6113 CA Yolo 9,903 5,366 6115 CA Yuba 2,838 2,432 8001 CO Adams 23,905 10,642 8005 CO Arapahoe 12,935 14,482 8007 CO Archuleta 529 760 8013 CO Boulder 12,829 9,485 8014 CO Broomfield 1,643 1,103 8019 CO Clear Creek 1,801 1,508 8031 CO Denver 21,058 18,279 8035 CO Douglas 7,661 6,610 8039 CO Elbert 1,218 978 8041 CO El Paso 22,309 20,644 8043 CO Fremont 3,380 1,228 8045 CO Garfield 9,738 3,040 8047 CO Gilpin 588 313 8051 CO Gunnison 922 1,454 8059 CO Jefferson 15,801 14,684 8067 CO La Plata 7,812 2,142 8069 CO Larimer 11,765 9,534 8077 CO Mesa 6,641 4,643 8081 CO Moffat 19,248 918 8083 CO Montezuma 1,174 1,448 8087 CO Morgan 7,561 1,334 8093 CO Park 563 1,178 8101 CO Pueblo 13,939 5,099 8103 CO Rio Blanco 3,773 657 8107 CO Routt 9,543 1,395 8119 CO Teller 559 1,149 8123 CO Weld 24,969 9,949 9001 CT Fairfield 26,532 26,655 9003 CT Hartford 23,700 22,776 9005 CT Litchfield 4,385 9,171 9007 CT Middlesex 6,883 6,921 9009 CT New Haven 21,665 24,411 9011 CT New London 11,029 14,040 9013 CT Tolland 4,059 5,133 9015 CT Windham 3,638 4,975 10001 DE Kent 8,329 4,921 10003 DE New Castle 25,493 13,358 10005 DE Sussex 20,993 8,598 11001 DC Washington 14,588 9,898 12001 FL Alachua 12,879 11,204 12003 FL Baker 2,083 1,427 12005 FL Bay 13,732 9,718 12009 FL Brevard 39,784 28,544 12011 FL Broward 65,830 49,993 FIPS State County NOX(TPY) VOC(TPY) 12015 FL Charlotte 6,219 9,695 12019 FL Clay 4,749 6,559 12021 FL Collier 12,784 17,035 12023 FL Columbia 4,960 4,141 12031 FL Duval 60,455 37,372 12033 FL Escambia 22,503 15,727 12035 FL Flagler 4,844 3,980 12039 FL Gadsden 4,468 3,043 12041 FL Gilchrist 623 849 12053 FL Hernando 6,844 6,571 12055 FL Highlands 4,550 6,466 12057 FL Hillsborough 71,783 46,252 12059 FL Holmes 1,422 1,297 12061 FL Indian River 7,005 6,896 12065 FL Jefferson 1,906 1,475 12069 FL Lake 6,364 12,178 12071 FL Lee 26,038 29,382 12073 FL Leon 8,969 10,954 12081 FL Manatee 22,380 13,052 12083 FL Marion 12,936 15,296 12085 FL Martin 16,244 10,385 12086 FL Miami-Dade 79,694 83,167 12089 FL Nassau 8,396 3,760 12095 FL Orange 39,994 42,368 12097 FL Osceola 5,669 9,185 12099 FL Palm Beach 45,408 47,568 12101 FL Pasco 22,415 14,385 12103 FL Pinellas 35,221 35,961 12105 FL Polk 26,753 26,571 12109 FL St Johns 9,232 7,213 12111 FL St Lucie 9,746 10,477 12113 FL Santa Rosa 6,605 8,373 12115 FL Sarasota 13,108 15,940 12117 FL Seminole 11,723 18,389 12119 FL Sumter 4,176 4,116 12127 FL Volusia 21,257 22,539 12129 FL Wakulla 1,367 2,170 13013 GA Barrow 2,533 2,068 13015 GA Bartow 32,666 5,238 13021 GA Bibb 7,894 7,280 13025 GA Brantley 791 642 13029 GA Bryan 1,842 1,812 13033 GA Burke 1,310 1,243 13035 GA Butts 1,389 1,211 13045 GA Carroll 4,247 4,048 13047 GA Catoosa 2,822 2,658 13051 GA Chatham 29,315 12,805 13053 GA Chattahoochee 288 341 13055 GA Chattooga 1,746 1,469 13057 GA Cherokee 6,214 5,712 13059 GA Clarke 3,920 4,075 13063 GA Clayton 12,318 6,958 13067 GA Cobb 25,971 21,411 13073 GA Columbia 3,526 3,960 13077 GA Coweta 16,881 3,323 13079 GA Crawford 490 473 13083 GA Dade 1,431 922 FIPS State County NOX(TPY) VOC(TPY) 13085 GA Dawson 715 895 13089 GA De Kalb 22,497 23,062 13097 GA Douglas 4,282 3,205 13103 GA Effingham 5,944 1,941 13113 GA Fayette 3,559 3,116 13117 GA Forsyth 4,753 4,654 13121 GA Fulton 39,064 35,206 13127 GA Glynn 8,178 4,757 13135 GA Gwinnett 22,648 24,947 13139 GA Hall 6,795 8,244 13143 GA Haralson 1,325 1,290 13145 GA Harris 1,542 1,642 13149 GA Heard 15,184 838 13151 GA Henry 8,919 5,062 13153 GA Houston 6,566 4,465 13159 GA Jasper 675 636 13169 GA Jones 1,276 956 13171 GA Lamar 775 827 13189 GA Mc Duffie 1,347 1,270 13191 GA Mc Intosh 2,306 2,554 13195 GA Madison 3,181 1,340 13197 GA Marion 366 388 13199 GA Meriwether 1,445 1,120 13207 GA Monroe 20,794 2,010 13213 GA Murray 1,656 1,447 13215 GA Muscogee 5,751 6,248 13217 GA Newton 3,333 3,168 13219 GA Oconee 1,438 1,413 13221 GA Oglethorpe 503 666 13223 GA Paulding 3,196 2,496 13225 GA Peach 1,697 1,548 13227 GA Pickens 1,073 1,243 13231 GA Pike 499 566 13233 GA Polk 1,648 1,740 13245 GA Richmond 13,061 7,970 13247 GA Rockdale 3,123 3,075 13249 GA Schley 190 276 13255 GA Spalding 2,215 3,100 13261 GA Sumter 1,739 1,291 13285 GA Troup 3,348 4,000 13289 GA Twiggs 867 752 13293 GA Upson 1,086 983 13295 GA Walker 2,125 2,247 13297 GA Walton 2,590 3,080 13313 GA Whitfield 7,092 6,071 16001 ID Ada 18,576 10,280 16015 ID Boise 719 1,212 16023 ID Butte 343 270 16027 ID Canyon 7,348 4,493 16041 ID Franklin 694 940 16045 ID Gem 1,243 636 16055 ID Kootenai 7,519 5,952 16073 ID Owyhee 652 610 16075 ID Payette 1,252 962 16081 ID Teton 401 982 17005 IL Bond 1,446 1,159 17007 IL Boone 2,331 3,012 FIPS State County NOX(TPY) VOC(TPY) 17013 IL Calhoun 916 439 17019 IL Champaign 8,919 6,996 17027 IL Clinton 3,455 2,003 17031 IL Cook 174,358 121,322 17037 IL De Kalb 3,888 4,001 17043 IL Du Page 37,034 25,338 17049 IL Effingham 2,827 2,270 17053 IL Ford 1,205 1,120 17057 IL Fulton 3,814 1,915 17063 IL Grundy 3,873 2,418 17065 IL Hamilton 703 721 17073 IL Henry 7,122 2,787 17081 IL Jefferson 3,383 2,466 17083 IL Jersey 1,479 1,070 17089 IL Kane 16,659 12,338 17091 IL Kankakee 7,317 5,160 17093 IL Kendall 4,416 3,138 17097 IL Lake 29,527 29,437 17111 IL Mc Henry 9,583 7,925 17113 IL Mc Lean 9,648 5,887 17115 IL Macon 12,313 4,300 17117 IL Macoupin 2,083 2,017 17119 IL Madison 20,676 7,591 17123 IL Marshall 2,203 1,372 17127 IL Massac 12,034 2,014 17129 IL Menard 567 720 17131 IL Mercer 1,040 1,130 17133 IL Monroe 2,939 1,511 17143 IL Peoria 16,440 6,608 17147 IL Piatt 4,042 1,074 17157 IL Randolph 8,923 1,526 17161 IL Rock Island 6,053 5,371 17163 IL St Clair 10,184 8,303 17167 IL Sangamon 16,756 7,778 17175 IL Stark 490 579 17179 IL Tazewell 37,744 5,169 17197 IL Will 46,106 14,878 17201 IL Winnebago 10,624 10,330 17203 IL Woodford 2,201 2,184 18001 IN Adams 2,092 1,786 18003 IN Allen 16,173 13,482 18005 IN Bartholomew 3,058 2,455 18007 IN Benton 1,077 702 18011 IN Boone 3,505 2,692 18013 IN Brown 695 1,219 18015 IN Carroll 1,391 1,237 18019 IN Clark 5,749 3,203 18021 IN Clay 1,667 1,527 18029 IN Dearborn 13,242 1,836 18033 IN De Kalb 5,289 2,627 18035 IN Delaware 5,182 4,569 18039 IN Elkhart 10,210 7,566 18043 IN Floyd 8,147 2,191 18047 IN Franklin 1,220 1,300 18051 IN Gibson 32,699 1,970 18055 IN Greene 1,559 1,569 18057 IN Hamilton 7,956 7,263 FIPS State County NOX(TPY) VOC(TPY) 18059 IN Hancock 3,140 2,469 18061 IN Harrison 3,172 1,612 18063 IN Hendricks 6,093 3,925 18065 IN Henry 3,373 2,399 18069 IN Huntington 3,089 2,327 18071 IN Jackson 3,429 2,495 18073 IN Jasper 20,104 2,461 18079 IN Jennings 6,368 1,353 18081 IN Johnson 4,701 4,186 18089 IN Lake 42,940 14,882 18091 IN La Porte 12,017 4,412 18095 IN Madison 5,447 4,996 18097 IN Marion 40,646 27,723 18099 IN Marshall 3,079 2,671 18105 IN Monroe 3,828 4,364 18107 IN Montgomery 3,804 2,324 18109 IN Morgan 6,594 2,925 18111 IN Newton 1,145 1,862 18113 IN Noble 3,643 2,884 18115 IN Ohio 551 249 18119 IN Owen 1,105 1,237 18123 IN Perry 2,699 1,253 18127 IN Porter 27,291 6,981 18129 IN Posey 11,763 1,721 18133 IN Putnam 4,703 2,070 18141 IN St Joseph 10,649 8,312 18143 IN Scott 1,355 1,355 18145 IN Shelby 3,603 1,999 18153 IN Sullivan 11,335 1,170 18157 IN Tippecanoe 8,677 5,153 18163 IN Vanderburgh 6,757 5,471 18165 IN Vermillion 13,902 1,102 18167 IN Vigo 17,609 4,744 18173 IN Warrick 18,055 2,446 18175 IN Washington 1,356 1,291 18179 IN Wells 1,529 1,398 18183 IN Whitley 2,355 1,952 19011 IA Benton 2,467 1,422 19013 IA Black Hawk 6,755 5,610 19015 IA Boone 4,182 1,574 19017 IA Bremer 1,365 1,508 19031 IA Cedar 3,076 1,513 19045 IA Clinton 10,640 3,251 19049 IA Dallas 3,099 2,312 19061 IA Dubuque 6,122 4,204 19075 IA Grundy 1,047 999 19077 IA Guthrie 746 600 19085 IA Harrison 2,563 1,414 19103 IA Johnson 5,881 5,980 19105 IA Jones 1,103 984 19113 IA Linn 16,168 7,903 19115 IA Louisa 6,763 791 19121 IA Madison 791 921 19127 IA Marshall 6,012 1,677 19129 IA Mills 4,028 785 19137 IA Montgomery 1,921 736 19139 IA Muscatine 10,419 2,451 FIPS State County NOX(TPY) VOC(TPY) 19153 IA Polk 17,804 17,248 19155 IA Pottawattamie 23,399 5,501 19163 IA Scott 10,337 6,877 19169 IA Story 6,573 3,734 19177 IA Van Buren 512 468 19179 IA Wapello 8,563 1,193 19181 IA Warren 4,696 1,719 20005 KS Atchison 1,124 610 20015 KS Butler 10,444 2,944 20035 KS Cowley 4,305 1,334 20045 KS Douglas 8,943 4,579 20059 KS Franklin 2,805 1,224 20079 KS Harvey 2,519 1,378 20085 KS Jackson 1,336 584 20087 KS Jefferson 1,486 1,293 20091 KS Johnson 19,471 21,510 20103 KS Leavenworth 2,847 2,142 20107 KS Linn 32,793 622 20121 KS Miami 7,535 1,267 20149 KS Pottawatomie 35,337 1,155 20155 KS Reno 6,628 3,325 20173 KS Sedgwick 20,896 18,185 20177 KS Shawnee 10,780 6,378 20191 KS Sumner 4,470 1,447 20195 KS Trego 1,432 601 20209 KS Wyandotte 14,691 7,213 21005 KY Anderson 858 615 21007 KY Ballard 2,546 880 21011 KY Bath 1,049 684 21013 KY Bell 889 1,053 21015 KY Boone 10,641 4,189 21017 KY Bourbon 1,274 809 21019 KY Boyd 8,035 2,223 21023 KY Bracken 493 433 21029 KY Bullitt 3,140 2,851 21037 KY Campbell 4,052 2,554 21043 KY Carter 2,375 1,503 21047 KY Christian 3,937 3,009 21049 KY Clark 6,453 2,033 21059 KY Daviess 11,704 3,635 21061 KY Edmonson 571 912 21067 KY Fayette 9,140 9,838 21073 KY Franklin 2,133 1,687 21077 KY Gallatin 2,122 690 21081 KY Grant 2,746 1,260 21083 KY Graves 1,699 1,521 21089 KY Greenup 3,772 1,431 21091 KY Hancock 8,006 523 21093 KY Hardin 4,432 3,437 21101 KY Henderson 5,015 2,342 21103 KY Henry 1,313 969 21111 KY Jefferson 57,954 27,868 21113 KY Jessamine 1,931 2,221 21117 KY Kenton 6,235 4,834 21123 KY Larue 804 522 21139 KY Livingston 1,854 974 21145 KY Mc Cracken 24,187 5,298 FIPS State County NOX(TPY) VOC(TPY) 21149 KY Mc Lean 476 386 21151 KY Madison 4,872 3,731 21163 KY Meade 3,021 1,963 21165 KY Menifee 165 261 21173 KY Montgomery 1,313 1,266 21179 KY Nelson 1,744 1,679 21185 KY Oldham 3,040 1,548 21191 KY Pendleton 3,482 611 21193 KY Perry 1,496 1,069 21195 KY Pike 3,564 2,521 21199 KY Pulaski 8,012 2,896 21203 KY Rockcastle 1,902 995 21209 KY Scott 3,773 1,895 21211 KY Shelby 2,664 1,901 21213 KY Simpson 1,461 990 21215 KY Spencer 416 534 21221 KY Trigg 1,285 1,417 21223 KY Trimble 4,940 443 21227 KY Warren 3,722 3,688 21233 KY Webster 12,021 557 21239 KY Woodford 3,105 1,625 22001 LA Acadia Par 7,200 2,700 22005 LA Ascension Par 14,288 7,324 22007 LA Assumption Par 1,841 797 22015 LA Bossier Par 5,301 3,386 22017 LA Caddo Par 11,505 10,705 22019 LA Calcasieu Par 52,705 15,219 22023 LA Cameron Par 8,087 3,574 22031 LA De Soto Par 18,084 2,022 22033 LA East Baton Roug 40,779 16,581 22037 LA East Feliciana 1,229 923 22045 LA Iberia Par 6,001 3,032 22047 LA Iberville Par 28,347 5,683 22051 LA Jefferson Par 24,170 16,262 22053 LA Jefferson Davis 3,201 2,327 22055 LA Lafayette Par 8,051 7,865 22057 LA Lafourche Par 5,794 4,753 22063 LA Livingston Par 3,441 3,729 22071 LA Orleans Par 38,986 11,934 22073 LA Ouachita Par 13,902 8,026 22075 LA Plaquemines Par 52,834 7,458 22077 LA Pointeupee Par 19,242 1,007 22087 LA St Bernard Par 8,058 3,520 22089 LA St Charles Par 21,868 6,057 22091 LA St Helena Par 1,722 668 22093 LA St James Par 8,992 2,233 22095 LA St John The Bap 64,272 3,951 22097 LA St Landry Par 7,277 3,816 22099 LA St Martin Par 3,563 3,103 22103 LA St Tammany Par 6,167 9,220 22109 LA Terrebonne Par 36,658 7,639 22111 LA Union Par 1,166 1,405 22113 LA Vermilion Par 12,700 3,684 22117 LA Washington Par 4,986 1,933 22119 LA Webster Par 3,707 2,164 22121 LA West Baton Roug 5,380 1,886 22125 LA West Feliciana 4,605 770 FIPS State County NOX(TPY) VOC(TPY) 23001 ME Androscoggin 4,026 4,055 23005 ME Cumberland 13,668 13,195 23009 ME Hancock 4,100 5,839 23011 ME Kennebec 4,943 6,404 23013 ME Knox 5,409 3,965 23017 ME Oxford 3,981 5,237 23019 ME Penobscot 9,071 8,272 23023 ME Sagadahoc 1,847 3,143 23029 ME Washington 3,790 4,816 23031 ME York 8,618 9,208 24001 MD Allegany 7,915 3,058 24003 MD Anne Arundel 35,280 14,857 24005 MD Baltimore 36,605 23,555 24009 MD Calvert 2,696 3,265 24013 MD Carroll 6,669 4,750 24015 MD Cecil 4,488 4,438 24017 MD Charles 17,511 4,964 24021 MD Frederick 11,480 9,175 24023 MD Garrett 2,318 2,572 24025 MD Harford 7,730 7,686 24027 MD Howard 11,097 8,610 24029 MD Kent 1,073 1,927 24031 MD Montgomery 30,189 24,905 24033 MD Prince Georges 36,041 23,120 24035 MD Queen Annes 2,643 2,922 24043 MD Washington 9,135 6,096 24047 MD Worcester 16,457 5,850 24510 MD Baltimore 19,656 14,265 25001 MA Barnstable 22,564 15,087 25003 MA Berkshire 6,123 6,698 25005 MA Bristol 23,812 13,978 25007 MA Dukes 4,454 2,302 25009 MA Essex 22,551 19,477 25011 MA Franklin 3,971 5,267 25013 MA Hampden 15,783 11,970 25015 MA Hampshire 4,338 5,314 25017 MA Middlesex 43,611 41,006 25021 MA Norfolk 25,071 23,095 25023 MA Plymouth 11,244 14,316 25025 MA Suffolk 20,096 13,794 25027 MA Worcester 28,051 26,710 26005 MI Allegan 5,654 7,832 26015 MI Barry 1,882 3,238 26019 MI Benzie 1,004 2,521 26021 MI Berrien 8,968 8,097 26027 MI Cass 2,131 2,820 26037 MI Clinton 4,101 3,817 26043 MI Dickinson 3,620 1,938 26045 MI Eaton 6,222 4,118 26049 MI Genesee 17,560 15,604 26055 MI Grand Traverse 3,584 4,375 26063 MI Huron 3,978 2,712 26065 MI Ingham 14,591 8,990 26067 MI Ionia 2,626 2,796 26077 MI Kalamazoo 11,047 12,396 26079 MI Kalkaska 1,840 1,943 26081 MI Kent 24,363 24,922 FIPS State County NOX(TPY) VOC(TPY) 26087 MI Lapeer 3,609 4,424 26089 MI Leelanau 1,695 3,092 26091 MI Lenawee 3,934 4,433 26093 MI Livingston 7,902 7,866 26099 MI Macomb 26,473 26,283 26101 MI Manistee 5,472 3,254 26105 MI Mason 1,896 2,865 26113 MI Missaukee 795 1,932 26115 MI Monroe 50,212 7,486 26121 MI Muskegon 11,842 7,407 26123 MI Newaygo 1,500 2,715 26125 MI Oakland 48,594 49,464 26139 MI Ottawa 27,318 10,347 26147 MI St Clair 30,127 7,200 26153 MI Schoolcraft 1,182 3,040 26155 MI Shiawassee 3,296 3,213 26159 MI Van Buren 3,627 4,247 26161 MI Washtenaw 15,202 12,789 26163 MI Wayne 91,246 65,955 26165 MI Wexford 1,594 2,253 27003 MN Anoka 12,250 13,242 27019 MN Carver 3,245 3,550 27025 MN Chisago 2,957 3,535 27037 MN Dakota 26,466 14,432 27053 MN Hennepin 72,542 40,466 27059 MN Isanti 1,845 2,261 27123 MN Ramsey 29,370 17,481 27139 MN Scott 5,982 5,117 27141 MN Sherburne 28,270 4,472 27163 MN Washington 22,184 9,044 27171 MN Wright 6,698 7,000 28001 MS Adams 3,380 2,352 28011 MS Bolivar 4,487 3,250 28023 MS Clarke 1,690 842 28029 MS Copiah 2,002 1,815 28033 MS De Soto 7,874 5,627 28039 MS George 719 799 28045 MS Hancock 3,457 2,894 28047 MS Harrison 21,493 10,839 28049 MS Hinds 12,854 12,182 28057 MS Itawamba 981 1,116 28059 MS Jackson 31,668 8,001 28069 MS Kemper 572 564 28075 MS Lauderdale 4,549 4,721 28081 MS Lee 4,712 5,055 28089 MS Madison 3,977 3,789 28093 MS Marshall 2,168 1,881 28115 MS Pontotoc 1,389 1,487 28121 MS Rankin 7,420 7,106 28127 MS Simpson 1,251 1,566 28131 MS Stone 864 677 28137 MS Tate 3,228 1,534 28143 MS Tunica 2,737 1,575 29013 MO Bates 1,853 1,158 29019 MO Boone 8,858 5,112 29021 MO Buchanan 7,424 3,337 29025 MO Caldwell 981 601 FIPS State County NOX(TPY) VOC(TPY) 29031 MO Cape Girardeau 6,493 3,387 29037 MO Cass 4,025 3,283 29039 MO Cedar 604 1,249 29043 MO Christian 2,294 2,267 29047 MO Clay 8,547 7,407 29049 MO Clinton 1,073 1,013 29059 MO Dallas 612 811 29071 MO Franklin 15,570 4,243 29077 MO Greene 17,088 9,325 29083 MO Henry 7,935 2,388 29095 MO Jackson 38,847 22,640 29099 MO Jefferson 16,584 6,502 29101 MO Johnson 2,321 1,929 29107 MO Lafayette 3,456 2,114 29113 MO Lincoln 2,715 2,122 29133 MO Mississippi 3,777 1,223 29137 MO Monroe 1,125 1,247 29143 MO New Madrid 36,195 2,384 29157 MO Perry 2,615 1,377 29163 MO Pike 9,123 1,623 29165 MO Platte 14,154 3,938 29167 MO Polk 1,275 1,462 29175 MO Randolph 18,265 1,215 29177 MO Ray 2,960 1,166 29183 MO St Charles 20,679 9,509 29186 MO Ste Genevieve 6,327 1,277 29187 MO St Francois 2,142 2,048 29189 MO St Louis 55,163 42,728 29201 MO Scott 6,983 1,896 29209 MO Stone 1,060 3,033 29213 MO Taney 1,688 3,535 29219 MO Warren 1,849 1,833 29221 MO Washington 688 1,093 29225 MO Webster 3,066 2,228 29510 MO St Louis 22,268 12,988 30017 MT Custer 1,779 613 30021 MT Dawson 2,294 655 30025 MT Fallon 2,174 187 30083 MT Richland 3,700 592 30085 MT Roosevelt 2,306 456 30087 MT Rosebud 39,036 646 30109 MT Wibaux 986 316 31025 NE Cass 6,843 1,508 31053 NE Dodge 4,261 1,662 31055 NE Douglas 21,699 16,972 31109 NE Lancaster 28,975 10,181 31131 NE Otoe 12,027 902 31153 NE Sarpy 4,530 4,493 31155 NE Saunders 2,070 1,016 31177 NE Washington 1,696 1,032 32001 NV Churchill 2,007 1,607 32003 NV Clark 72,938 37,438 32005 NV Douglas 2,052 2,068 32007 NV Elko 8,294 2,928 32009 NV Esmeralda 99 138 32011 NV Eureka 1,493 362 32013 NV Humboldt 12,297 1,097 FIPS State County NOX(TPY) VOC(TPY) 32015 NV Lander 1,085 540 32017 NV Lincoln 1,286 281 32019 NV Lyon 8,779 2,120 32021 NV Mineral 190 439 32023 NV Nye 1,052 1,214 32027 NV Pershing 2,296 1,109 32029 NV Storey 1,997 173 32031 NV Washoe 13,261 13,061 32033 NV White Pine 487 520 32510 NV Carson City 1,414 1,390 33001 NH Belknap 2,935 5,685 33005 NH Cheshire 2,550 4,524 33007 NH Coos 1,675 4,154 33009 NH Grafton 6,000 6,820 33011 NH Hillsborough 12,960 12,803 33013 NH Merrimack 12,716 6,909 33015 NH Rockingham 16,598 12,738 33017 NH Strafford 2,332 3,067 33019 NH Sullivan 2,138 3,442 34001 NJ Atlantic 12,145 11,561 34003 NJ Bergen 23,591 22,155 34005 NJ Burlington 15,322 11,542 34007 NJ Camden 15,371 9,288 34011 NJ Cumberland 5,837 4,868 34013 NJ Essex 21,311 12,309 34015 NJ Gloucester 12,133 7,021 34017 NJ Hudson 28,960 7,987 34019 NJ Hunterdon 3,819 3,791 34021 NJ Mercer 16,771 6,539 34023 NJ Middlesex 28,059 16,739 34025 NJ Monmouth 18,919 15,823 34027 NJ Morris 13,645 13,868 34029 NJ Ocean 16,113 18,741 34031 NJ Passaic 8,774 8,663 34033 NJ Salem 7,328 3,012 34035 NJ Somerset 7,845 7,328 34037 NJ Sussex 2,754 5,108 34039 NJ Union 20,202 10,526 34041 NJ Warren 5,351 3,932 35001 NM Bernalillo 23,199 18,248 35013 NM Dona Ana 9,634 6,822 35015 NM Eddy 14,772 2,923 35017 NM Grant 2,288 1,513 35025 NM Lea 31,794 2,254 35031 NM Mc Kinley 13,448 4,292 35039 NM Rio Arriba 18,855 2,295 35043 NM Sandoval 4,627 3,334 35045 NM San Juan 103,288 3,950 35049 NM Santa Fe 5,774 6,183 35057 NM Torrance 4,607 1,501 35061 NM Valencia 7,167 2,559 36001 NY Albany 17,534 12,854 36005 NY Bronx 14,061 21,882 36009 NY Cattaraugus 3,031 4,152 36011 NY Cayuga 3,757 4,259 36013 NY Chautauqua 18,693 7,130 36015 NY Chemung 3,413 3,577 FIPS State County NOX(TPY) VOC(TPY) 36021 NY Columbia 2,436 3,291 36027 NY Dutchess 8,044 9,405 36029 NY Erie 32,876 35,630 36031 NY Essex 2,807 5,370 36035 NY Fulton 1,217 3,178 36037 NY Genesee 4,188 3,389 36039 NY Greene 5,640 3,141 36041 NY Hamilton 485 6,763 36043 NY Herkimer 3,575 4,573 36045 NY Jefferson 5,668 8,097 36047 NY Kings 25,287 47,314 36051 NY Livingston 2,521 3,341 36053 NY Madison 2,841 2,981 36055 NY Monroe 38,906 31,846 36057 NY Montgomery 3,591 3,139 36059 NY Nassau 34,137 38,869 36061 NY New York 34,443 39,053 36063 NY Niagara 11,030 9,844 36065 NY Oneida 7,535 10,521 36067 NY Onondaga 16,822 19,294 36069 NY Ontario 5,012 5,174 36071 NY Orange 18,555 12,821 36073 NY Orleans 1,406 2,064 36075 NY Oswego 5,324 6,390 36079 NY Putnam 5,322 6,462 36081 NY Queens 40,551 38,665 36083 NY Rensselaer 4,163 5,952 36085 NY Richmond 8,862 12,185 36087 NY Rockland 12,693 11,291 36091 NY Saratoga 6,261 9,521 36093 NY Schenectady 4,735 5,320 36095 NY Schoharie 1,601 2,280 36099 NY Seneca 1,525 3,544 36101 NY Steuben 5,235 4,473 36103 NY Suffolk 56,042 60,310 36111 NY Ulster 5,941 7,500 36113 NY Warren 4,807 5,696 36115 NY Washington 2,468 2,779 36117 NY Wayne 3,863 3,659 36119 NY Westchester 25,275 30,153 37001 NC Alamance 4,711 5,592 37003 NC Alexander 835 1,264 37007 NC Anson 1,394 1,358 37011 NC Avery 649 954 37021 NC Buncombe 12,517 8,560 37023 NC Burke 3,308 3,181 37025 NC Cabarrus 6,092 5,140 37027 NC Caldwell 2,512 2,687 37033 NC Caswell 730 693 37035 NC Catawba 23,480 5,635 37037 NC Chatham 5,915 3,005 37045 NC Cleveland 3,439 5,798 37051 NC Cumberland 9,091 9,332 37053 NC Currituck 4,239 2,711 37057 NC Davidson 6,408 5,317 37059 NC Davie 1,716 1,583 37063 NC Durham 8,309 9,444 FIPS State County NOX(TPY) VOC(TPY) 37065 NC Edgecombe 2,253 2,289 37067 NC Forsyth 10,794 10,271 37069 NC Franklin 1,326 2,045 37071 NC Gaston 17,147 8,389 37075 NC Graham 212 351 37077 NC Granville 2,349 3,740 37079 NC Greene 701 682 37081 NC Guilford 14,826 21,834 37085 NC Harnett 3,167 3,315 37087 NC Haywood 6,694 2,725 37089 NC Henderson 3,085 4,139 37093 NC Hoke 951 1,341 37097 NC Iredell 8,433 8,224 37099 NC Jackson 1,602 1,730 37101 NC Johnston 7,437 6,689 37107 NC Lenoir 2,128 3,478 37109 NC Lincoln 1,946 2,402 37115 NC Madison 911 861 37117 NC Martin 7,232 1,131 37119 NC Mecklenburg 26,493 28,808 37127 NC Nash 4,647 5,866 37129 NC New Hanover 17,258 7,342 37135 NC Orange 5,295 3,913 37145 NC Person 27,566 1,291 37147 NC Pitt 4,101 5,362 37151 NC Randolph 4,498 5,056 37157 NC Rockingham 6,891 3,721 37159 NC Rowan 7,838 5,894 37167 NC Stanly 2,109 2,129 37169 NC Stokes 21,539 1,531 37171 NC Surry 3,264 3,193 37173 NC Swain 580 1,490 37175 NC Transylvania 958 2,971 37179 NC Union 4,650 5,409 37183 NC Wake 21,421 25,488 37197 NC Yadkin 1,655 1,375 37199 NC Yancey 804 828 38007 ND Billings 1,826 421 38053 ND Mc Kenzie 2,548 612 38055 ND Mc Lean 13,318 1,059 38057 ND Mercer 44,476 569 38065 ND Oliver 24,027 246 38089 ND Stark 3,365 1,268 38105 ND Williams 5,633 1,179 39003 OH Allen 7,788 5,329 39007 OH Ashtabula 14,228 8,135 39011 OH Auglaize 2,687 2,164 39013 OH Belmont 9,825 3,880 39015 OH Brown 2,403 1,744 39017 OH Butler 16,538 10,024 39019 OH Carroll 1,519 1,329 39021 OH Champaign 1,567 1,735 39023 OH Clark 5,544 5,102 39025 OH Clermont 35,403 6,071 39027 OH Clinton 2,732 2,113 39029 OH Columbiana 4,441 4,409 39035 OH Cuyahoga 49,165 49,648 FIPS State County NOX(TPY) VOC(TPY) 39037 OH Darke 2,437 2,401 39041 OH Delaware 6,804 5,832 39045 OH Fairfield 5,764 4,415 39047 OH Fayette 2,240 1,503 39049 OH Franklin 37,577 36,689 39051 OH Fulton 4,471 2,736 39055 OH Geauga 3,070 4,815 39057 OH Greene 8,532 5,250 39061 OH Hamilton 48,326 31,486 39081 OH Jefferson 45,828 3,039 39083 OH Knox 2,168 2,802 39085 OH Lake 22,702 10,874 39087 OH Lawrence 3,465 2,768 39089 OH Licking 7,774 6,345 39093 OH Lorain 22,833 12,869 39095 OH Lucas 31,318 16,799 39097 OH Madison 3,125 2,772 39099 OH Mahoning 10,141 8,781 39101 OH Marion 3,593 2,244 39103 OH Medina 6,897 6,519 39109 OH Miami 3,981 4,145 39113 OH Montgomery 21,298 17,137 39117 OH Morrow 2,491 2,084 39123 OH Ottawa 5,137 4,484 39129 OH Pickaway 3,689 2,129 39133 OH Portage 7,364 7,367 39135 OH Preble 2,739 2,429 39141 OH Ross 6,731 2,854 39143 OH Sandusky 7,738 3,599 39151 OH Stark 12,637 14,152 39153 OH Summit 17,401 18,862 39155 OH Trumbull 13,455 7,528 39159 OH Union 2,401 2,315 39161 OH Van Wert 1,644 1,292 39165 OH Warren 7,370 6,156 39167 OH Washington 24,330 3,596 39173 OH Wood 9,619 5,272 40001 OK Adair 1,168 833 40017 OK Canadian 8,032 4,338 40021 OK Cherokee 1,090 1,952 40027 OK Cleveland 4,969 6,708 40031 OK Comanche 6,310 4,371 40037 OK Creek 5,385 3,272 40043 OK Dewey 3,059 350 40047 OK Garfield 7,734 1,913 40051 OK Grady 8,804 2,517 40071 OK Kay 6,542 2,347 40081 OK Lincoln 3,381 1,678 40083 OK Logan 4,145 1,481 40087 OK Mc Clain 3,905 1,557 40097 OK Mayes 19,969 2,612 40101 OK Muskogee 24,731 3,015 40103 OK Noble 16,755 1,059 40109 OK Oklahoma 27,777 27,110 40111 OK Okmulgee 3,006 1,607 40113 OK Osage 5,799 2,337 40115 OK Ottawa 2,153 2,023 FIPS State County NOX(TPY) VOC(TPY) 40117 OK Pawnee 1,377 915 40121 OK Pittsburg 6,536 2,352 40125 OK Pottawatomie 3,063 2,779 40131 OK Rogers 25,690 3,894 40135 OK Sequoyah 4,293 2,595 40143 OK Tulsa 31,587 26,128 40145 OK Wagoner 3,339 2,915 40147 OK Washington 2,106 1,639 41005 OR Clackamas 12,077 16,254 41009 OR Columbia 4,275 2,221 41019 OR Douglas 7,677 7,795 41029 OR Jackson 8,099 10,608 41039 OR Lane 14,653 19,007 41047 OR Marion 11,103 14,314 41051 OR Multnomah 42,322 34,689 41053 OR Polk 2,224 3,017 41065 OR Wasco 2,907 2,800 41067 OR Washington 12,438 21,452 41071 OR Yamhill 4,603 3,972 42001 PA Adams 3,389 3,495 42003 PA Allegheny 57,115 28,969 42005 PA Armstrong 20,333 2,566 42007 PA Beaver 32,385 4,544 42011 PA Berks 18,147 11,257 42013 PA Blair 5,486 3,407 42017 PA Bucks 16,321 16,169 42019 PA Butler 7,562 5,985 42021 PA Cambria 6,427 3,935 42025 PA Carbon 3,188 3,449 42027 PA Centre 7,431 4,457 42029 PA Chester 16,701 13,089 42033 PA Clearfield 11,404 3,461 42035 PA Clinton 3,024 2,620 42039 PA Crawford 4,971 4,432 42041 PA Cumberland 13,722 6,987 42043 PA Dauphin 11,504 9,488 42045 PA Delaware 33,005 12,316 42049 PA Erie 12,667 8,478 42051 PA Fayette 4,516 4,315 42055 PA Franklin 5,809 4,850 42059 PA Greene 20,544 1,667 42063 PA Indiana 43,100 3,479 42069 PA Lackawanna 6,556 5,357 42071 PA Lancaster 17,412 16,450 42073 PA Lawrence 9,106 2,731 42075 PA Lebanon 5,994 4,464 42077 PA Lehigh 10,890 8,666 42079 PA Luzerne 10,513 9,434 42081 PA Lycoming 4,236 4,792 42085 PA Mercer 5,803 4,403 42089 PA Monroe 5,574 6,512 42091 PA Montgomery 23,215 24,252 42093 PA Montour 14,042 1,496 42095 PA Northampton 23,850 6,549 42099 PA Perry 2,838 1,994 42101 PA Philadelphia 36,639 19,587 42103 PA Pike 2,508 3,394 FIPS State County NOX(TPY) VOC(TPY) 42107 PA Schuylkill 6,486 4,769 42111 PA Somerset 4,940 4,281 42117 PA Tioga 2,354 2,395 42125 PA Washington 16,235 6,499 42129 PA Westmoreland 16,323 9,970 42131 PA Wyoming 1,888 2,106 42133 PA York 33,697 9,848 44001 RI Bristol 857 1,337 44003 RI Kent 3,978 5,553 44005 RI Newport 2,014 3,452 44007 RI Providence 13,977 14,363 44009 RI Washington 5,633 4,259 45001 SC Abbeville 1,064 1,264 45003 SC Aiken 7,329 6,353 45007 SC Anderson 9,358 8,480 45015 SC Berkeley 21,360 8,164 45017 SC Calhoun 1,394 1,422 45019 SC Charleston 35,383 16,024 45021 SC Cherokee 3,377 2,682 45023 SC Chester 4,065 2,100 45025 SC Chesterfield 1,643 2,681 45029 SC Colleton 7,838 3,147 45031 SC Darlington 6,526 3,088 45035 SC Dorchester 7,564 3,813 45037 SC Edgefield 925 1,026 45039 SC Fairfield 1,883 2,065 45041 SC Florence 7,026 6,230 45045 SC Greenville 13,847 16,041 45055 SC Kershaw 2,422 3,118 45057 SC Lancaster 3,212 2,940 45059 SC Laurens 3,211 3,405 45063 SC Lexington 12,622 11,487 45071 SC Newberry 2,514 2,705 45073 SC Oconee 2,808 4,361 45077 SC Pickens 3,643 5,304 45079 SC Richland 21,510 13,244 45081 SC Saluda 803 1,087 45083 SC Spartanburg 13,650 12,233 45087 SC Union 1,536 1,326 45091 SC York 8,393 7,573 46033 SD Custer 1,118 583 46071 SD Jackson 893 505 46083 SD Lincoln 1,826 1,285 46087 SD Mcok 967 471 46099 SD Minnehaha 5,867 5,323 46103 SD Pennington 9,560 3,910 46125 SD Turner 685 407 47001 TN Anderson 16,342 9,174 47009 TN Blount 4,117 5,155 47011 TN Bradley 4,475 4,888 47013 TN Campbell 3,483 2,165 47015 TN Cannon 357 514 47019 TN Carter 1,474 2,139 47021 TN Cheatham 2,284 1,955 47029 TN Cocke 2,357 2,586 47037 TN Davidson 28,579 24,112 47043 TN Dickson 3,450 2,519 FIPS State County NOX(TPY) VOC(TPY) 47047 TN Fayette 2,993 1,683 47057 TN Grainger 794 1,478 47063 TN Hamblen 5,086 4,198 47065 TN Hamilton 17,447 18,113 47073 TN Hawkins 15,664 3,350 47075 TN Haywood 3,300 1,144 47081 TN Hickman 2,517 1,114 47089 TN Jefferson 3,882 3,447 47093 TN Knox 19,852 19,374 47099 TN Lawrence 1,257 1,739 47105 TN Loudon 5,341 2,983 47107 TN Mc Minn 9,893 3,122 47111 TN Macon 1,629 698 47115 TN Marion 3,575 2,222 47119 TN Maury 5,132 3,896 47121 TN Meigs 704 914 47125 TN Montgomery 5,411 5,378 47139 TN Polk 738 930 47141 TN Putnam 4,412 3,180 47145 TN Roane 18,289 3,228 47147 TN Robertson 4,253 2,870 47149 TN Rutherford 9,474 7,209 47153 TN Sequatchie 509 524 47155 TN Sevier 3,129 6,218 47157 TN Shelby 50,255 32,469 47159 TN Smith 2,003 1,236 47161 TN Stewart 28,571 1,327 47163 TN Sullivan 21,426 13,036 47165 TN Sumner 13,726 4,211 47167 TN Tipton 3,541 2,244 47169 TN Trousdale 430 362 47171 TN Unicoi 915 969 47173 TN Union 848 1,121 47179 TN Washington 4,136 4,911 47187 TN Williamson 6,555 4,582 47189 TN Wilson 5,097 3,932 48013 TX Atascosa 6,170 1,781 48015 TX Austin 3,209 1,487 48019 TX Bandera 1,477 1,143 48021 TX Bastrop 2,915 2,302 48029 TX Bexar 56,084 42,317 48039 TX Brazoria 38,604 8,035 48043 TX Brewster 756 447 48055 TX Caldwell 2,704 4,304 48057 TX Calhoun 9,955 5,167 48061 TX Cameron 12,239 13,324 48071 TX Chambers 7,359 2,384 48073 TX Cherokee 2,309 2,081 48085 TX Collin 17,069 13,789 48091 TX Comal 7,780 3,865 48097 TX Cooke 2,973 4,391 48113 TX Dallas 69,930 56,198 48121 TX Denton 16,787 12,028 48139 TX Ellis 18,573 4,263 48141 TX El Paso 21,921 16,090 48147 TX Fannin 1,149 1,241 48149 TX Fayette 12,217 2,834 FIPS State County NOX(TPY) VOC(TPY) 48157 TX Fort Bend 15,696 8,481 48161 TX Freestone 17,850 3,699 48167 TX Galveston 40,120 9,283 48175 TX Goliad 5,817 1,230 48181 TX Grayson 6,291 5,410 48183 TX Gregg 10,412 4,735 48187 TX Guadalupe 6,558 3,455 48199 TX Hardin 2,972 2,480 48201 TX Harris 171,697 96,358 48203 TX Harrison 16,043 2,980 48209 TX Hays 6,281 3,341 48213 TX Henderson 4,850 4,103 48215 TX Hidalgo 24,122 20,921 48221 TX Hood 2,140 1,529 48231 TX Hunt 3,614 3,193 48245 TX Jefferson 56,084 15,183 48251 TX Johnson 7,068 3,676 48257 TX Kaufman 4,933 3,481 48259 TX Kendall 1,076 1,384 48291 TX Liberty 4,736 3,268 48293 TX Limestone 14,704 2,242 48309 TX Mc Lennan 11,784 6,876 48321 TX Matagorda 12,595 5,609 48325 TX Medina 2,566 1,659 48331 TX Milam 14,744 2,454 48339 TX Montgomery 11,575 8,787 48349 TX Navarro 4,971 3,517 48355 TX Nueces 46,509 17,401 48361 TX Orange 13,114 3,059 48363 TX Palo Pinto 3,004 3,442 48365 TX Panola 13,545 7,585 48367 TX Parker 5,560 4,445 48397 TX Rockwall 1,905 1,698 48401 TX Rusk 22,953 1,913 48407 TX San Jacinto 1,245 1,309 48409 TX San Patricio 6,250 3,437 48423 TX Smith 9,809 6,763 48425 TX Somervell 271 522 48439 TX Tarrant 51,540 34,372 48449 TX Titus 26,543 1,876 48453 TX Travis 25,760 25,510 48459 TX Upshur 4,829 1,304 48469 TX Victoria 9,547 4,062 48471 TX Walker 3,254 2,276 48473 TX Waller 2,375 1,724 48491 TX Williamson 8,306 7,272 48493 TX Wilson 1,176 971 48497 TX Wise 11,060 7,066 49003 UT Box Elder 6,533 5,235 49005 UT Cache 3,236 3,513 49007 UT Carbon 5,832 1,278 49011 UT Davis 9,584 7,449 49013 UT Duchesne 2,123 1,173 49015 UT Emery 30,385 1,196 49021 UT Iron 4,155 2,310 49023 UT Juab 4,467 1,256 49027 UT Millard 29,923 2,052 FIPS State County NOX(TPY) VOC(TPY) 49029 UT Morgan 3,356 764 49035 UT Salt Lake 32,265 25,327 49037 UT San Juan 1,381 1,369 49043 UT Summit 5,073 2,165 49045 UT Tooele 6,310 3,474 49047 UT Uintah 13,363 1,382 49049 UT Utah 12,054 11,877 49051 UT Wasatch 1,051 1,037 49053 UT Washington 4,787 4,471 49057 UT Weber 5,895 5,923 50003 VT Bennington 1,116 1,871 50005 VT Caledonia 1,352 1,601 50007 VT Chittenden 4,759 6,256 50009 VT Essex 370 1,616 50011 VT Franklin 1,529 2,247 50013 VT Grand Isle 284 2,280 50017 VT Orange 1,206 1,724 50027 VT Windsor 2,500 3,061 51003 VA Albemarle 4,838 3,549 51007 VA Amelia 778 654 51013 VA Arlington 5,235 3,276 51023 VA Botetourt 6,049 2,050 51033 VA Caroline 2,620 1,816 51036 VA Charles City 697 695 51041 VA Chesterfield 20,939 8,823 51043 VA Clarke 1,034 862 51045 VA Craig 120 231 51049 VA Cumberland 297 355 51053 VA Dinwiddie 2,440 1,376 51059 VA Fairfax 22,429 20,709 51061 VA Fauquier 4,577 3,535 51065 VA Fluvanna 4,326 736 51067 VA Franklin 2,178 2,174 51069 VA Frederick 4,969 5,160 51071 VA Giles 9,214 1,716 51073 VA Gloucester 1,280 2,113 51075 VA Goochland 2,161 1,423 51079 VA Greene 722 550 51083 VA Halifax 11,197 2,163 51085 VA Hanover 6,071 4,178 51087 VA Henrico 11,079 7,525 51093 VA Isle Of Wight 5,478 1,715 51095 VA James City 2,851 1,972 51097 VA King And Queen 436 605 51101 VA King William 3,381 644 51107 VA Loudoun 6,901 5,975 51109 VA Louisa 1,885 1,594 51113 VA Madison 698 797 51115 VA Mathews 450 866 51121 VA Montgomery 5,660 3,319 51127 VA New Kent 1,857 1,392 51131 VA Northampton 6,039 3,911 51139 VA Page 1,059 1,195 51143 VA Pittsylvania 3,976 2,638 51145 VA Powhatan 938 949 51149 VA Prince George 2,189 1,751 51153 VA Prince William 10,224 6,860 FIPS State County NOX(TPY) VOC(TPY) 51161 VA Roanoke 5,153 6,688 51163 VA Rockbridge 2,714 1,885 51165 VA Rockingham 4,598 3,380 51167 VA Russell 8,706 1,094 51169 VA Scott 1,076 994 51177 VA Spotsylvania 4,223 3,212 51179 VA Stafford 4,308 2,594 51181 VA Surry 552 598 51183 VA Sussex 1,603 900 51187 VA Warren 1,612 1,823 51191 VA Washington 3,244 2,553 51197 VA Wythe 2,867 1,962 51199 VA York 10,158 2,462 51510 VA Alexandria 5,701 1,877 51520 VA Bristol 1,187 881 51540 VA Charlottesville 1,412 1,478 51550 VA Chesapeake 13,284 5,795 51570 VA Colonial Height 623 620 51590 VA Danville 2,585 1,489 51600 VA Fairfax 369 599 51610 VA Falls Church 189 252 51630 VA Fredericksburg 1,163 1,344 51650 VA Hampton 4,001 3,696 51660 VA Harrisonburg 1,768 1,266 51670 VA Hopewell 12,875 1,470 51683 VA Manassas 1,016 650 51685 VA Manassas Park 284 212 51700 VA Newport News 11,162 4,274 51710 VA Norfolk 18,926 5,593 51730 VA Petersburg 1,406 1,500 51735 VA Poquoson 292 359 51740 VA Portsmouth 7,430 2,085 51760 VA Richmond 8,113 6,926 51770 VA Roanoke 3,443 3,440 51775 VA Salem 1,213 896 51800 VA Suffolk 2,962 2,690 51810 VA Virginia Beach 11,216 9,169 51830 VA Williamsburg 369 311 51840 VA Winchester 1,202 828 53009 WA Clallam 17,760 4,072 53011 WA Clark 13,180 15,784 53015 WA Cowlitz 10,030 6,268 53029 WA Island 4,740 3,060 53031 WA Jefferson 4,774 2,097 53033 WA King 76,818 76,825 53035 WA Kitsap 6,901 8,030 53041 WA Lewis 21,481 4,893 53045 WA Mason 1,603 2,807 53053 WA Pierce 32,155 27,917 53057 WA Skagit 9,741 6,434 53059 WA Skamania 1,515 1,185 53061 WA Snohomish 22,697 24,226 53063 WA Spokane 16,380 19,477 53067 WA Thurston 8,289 10,769 53073 WA Whatcom 11,417 8,587 54003 WV Berkeley 7,828 3,053 54005 WV Boone 1,322 1,001 FIPS State County NOX(TPY) VOC(TPY) 54009 WV Brooke 2,074 1,025 54011 WV Cabell 5,239 3,778 54015 WV Clay 325 394 54023 WV Grant 24,312 876 54025 WV Greenbrier 2,136 2,068 54027 WV Hampshire 831 2,096 54029 WV Hancock 3,845 1,053 54033 WV Harrison 23,291 2,593 54035 WV Jackson 2,876 1,620 54037 WV Jefferson 2,709 1,671 54039 WV Kanawha 23,091 9,410 54043 WV Lincoln 576 647 54049 WV Marion 2,616 1,802 54051 WV Marshall 36,079 1,091 54053 WV Mason 24,204 1,293 54061 WV Monongalia 12,593 3,495 54065 WV Morgan 1,054 540 54069 WV Ohio 2,970 1,955 54073 WV Pleasants 14,121 567 54077 WV Preston 3,990 1,332 54079 WV Putnam 37,461 1,923 54099 WV Wayne 6,732 1,534 54105 WV Wirt 142 416 54107 WV Wood 5,331 3,553 55003 WI Ashland 3,014 1,907 55009 WI Brown 24,023 11,499 55015 WI Calumet 2,117 2,091 55021 WI Columbia 11,509 4,369 55025 WI Dane 18,896 19,321 55027 WI Dodge 3,861 4,000 55029 WI Door 1,877 3,419 55037 WI Florence 240 3,028 55039 WI Fond Du Lac 4,441 4,218 55041 WI Forest 754 2,422 55049 WI Iowa 1,021 1,723 55055 WI Jefferson 4,770 4,416 55059 WI Kenosha 16,167 4,795 55061 WI Kewaunee 941 1,697 55071 WI Manitowoc 5,691 3,898 55073 WI Marathon 15,895 6,622 55079 WI Milwaukee 35,493 29,271 55083 WI Oconto 1,538 2,920 55085 WI Oneida 3,456 5,008 55087 WI Outagamie 9,650 7,119 55089 WI Ozaukee 4,485 3,354 55093 WI Pierce 2,219 1,940 55101 WI Racine 5,415 7,402 55105 WI Rock 6,982 6,873 55109 WI St Croix 4,609 3,538 55111 WI Sauk 2,843 3,863 55117 WI Sheboygan 10,860 5,508 55123 WI Vernon 5,807 2,048 55125 WI Vilas 1,087 5,909 55127 WI Walworth 4,219 5,159 55131 WI Washington 4,127 4,765 55133 WI Waukesha 12,087 15,487 56001 WY Albany 5,719 1,872 FIPS State County NOX(TPY) VOC(TPY) 56005 WY Campbell 14,563 2,207 56007 WY Carbon 9,317 1,761 56009 WY Converse 21,371 1,216 56011 WY Crook 2,399 1,083 56019 WY Johnson 4,182 1,379 56021 WY Laramie 8,541 3,934 56023 WY Lincoln 22,856 1,481 56025 WY Natrona 7,766 3,389 56027 WY Niobrara 1,972 976 56031 WY Platte 23,234 1,153 56033 WY Sheridan 3,405 1,800 56035 WY Sublette 9,893 1,098 56037 WY Sweetwater 59,386 3,513 56039 WY Teton 1,083 2,165 56041 WY Uinta 5,678 1,345 56045 WY Weston 3,918 666 APPENDIX B MODEL PERFORMANCE Northeast Domain (12NE2) South domain (12SOUTH1) Southeast domain (12SE2) Florida domain (12FLORIDA2) Ohio Valley (12OV1) Midwest domain (12MW3) Midwest domain (12MW3) Western domain (12WUS1) – 2005 simulation; 12WUS1 includes both 12WUS2 and 12SEATTLE1 Western domain (12WUS1) – 2006 simulation; 12WUS1 includes both 12WUS2 and 12SEATTLE1 United States Environmental Protection Agency Office of Air Quality Planning and Standards Air Quality Assessment Division Research Triangle Park, NC Publication N
text/markdown
# Air Quality Modeling Technical Support Document: Ozone Source Apportionment Application in Support of the Designation Process for the Ozone NAAQS # EPA-454/R-10-005 November 2010 # Air Quality Modeling Technical Support Document: Ozone Source Apportionment Application in Support of the Designation Process for the Ozone NAAQS U.S. Environmental Protection Agency Office of Air Quality Planning and Standards Air Quality Assessment Division Research Triangle Park, NC 27711 # 1 Contents 1 Background 2 Limitations 3 Derivation of Contribution Estimate 3.1 Primary Standard 3.2 Secondary Standard 4 Methodology Details 4.1 Identifying Violating Monitors 4.2 Selection of Sources: Counties 4.3 Photochemical Model Application 4.4 Emissions 4.5 Meteorological Inputs 4.6 Initial and Boundary Conditions 5 Operational Model Performance Description 6 References Appendix A Emissions Totals Appendix B Model Performance # 2 1 Background This document describes the air quality m odeling performed by EPA in support of the most recent ozone designations process. A national scale air quality modeling analysis was performed to estimate the impact of county specific anthropogenic NOX and VOC emissions on model estimated ozone concentra tions. Source contribution is estimated for the primary and secondary forms of the oz one National Ambient Air Quality Standard (NAAQS). Air quality impacts are estimated wi th the Comprehensive Air Quality Model with Extensions (CAMx) model. CAMx si mulates the numerous physical and chemical processes involved in the form ation, transport, and destruction of ozone, particulate matter and air toxics. In addition to the CAMx model, the modeling platform includes the emissions, meteorology, and initial and boundary condition data which are inputs to this model. Photochemical grid models use state of th e science numerical algorithms to estimate pollutant formation, transport, and deposition ov er a variety of spatia l scales that range from urban to continental. Emissions of pr ecursor species are injected into the model where they react to form secondary species such as ozone and then transport around the modeling domain before ultimately being re moved by deposition or chemical reaction. Photochemical model source apportionment trac ks the formation and transport of ozone from emissions sources and allows the estimati on of contributions at receptors. This type of emissions apportionment is useful to unders tand what types of sources or regions are contributing to ozone estimated by photochemical grid models. Source apportionment is an alternative a pproach to zero-out modeling and has the advantage of being much more efficient with computational resource s. For instance, to estimate the contribution from 20 source re gions a total of 20 individual zero-out simulations would be needed compared to a single source apportionment simulation. The incremental run-time associated with the a dditional source region tracking is less than performing numerous iterat ive zero-out simulations. The Comprehensive Air-Quality Model with extensions is a three-dimensional Eularian “one-atmosphere” photochemical transport model that uses state of the science routines to model ozone and particulate matter formation and removal processes (Nobel, McDonald-Buller et al. 2001; ENVIRON 2008) . CAMx contains a variety of ozone source apportionment tools, including the original ozone source apportionment tool (OSAT) and the anthropogenic pre-cursor culpability assessment (APCA) tool (ENVIRON 2008). Ozone source apportionment in CAMx tracks the contributions to each grid cell from emissions source groups, emissions source regions, initial conditions, and boundary conditions with reactive tracer species. S ource apportionment tracers are treated using the standard model algorithms fo r vertical advection, verti cal diffusion, and horizontal diffusion. Horizontal advective fluxes for each of the regular model species that make up nitrogen oxides (NO X # ) and volatile organic compounds (VOC) are combined and # 3 normalized by a concentration based weight ed mean. The estimated normalized fluxes are used to advect the tracer species rather than solving them with the standard model formulation to improve consistency between tracer and regular m odel concentrations (ENVIRON 2008). The deposition velocities for NO X # tracers are the concentration weighted average of the depos ition velocities for NO and NO 2 # . The deposition velocities for VOC tracers are the concentration weight ed average (done on a ppmC basis) of the deposition velocities for each of the CB05 sp ecies. Ozone tracers use the same deposition velocities as ozone (ENVIRON 2008). Separate ozone tracers are used in CAMx to track ozone formation that happens under NO X # and VOC limited conditions. The ozone pr oduction regime indicator used in CAMx compares well with sensitivity to NO X # and VOC estimated using the Decoupled Direct Method (DDM) (Dunker, Yarwood et al. 2002 ). The source apportionment methodology in CAMx compared favorably to sensitivity runs done using the Urban Airshed Model and DDM, particularly for higher estima ted ozone concentrations (Yarwood 1996; Dunker, Yarwood et al. 2002). CAMx source ap portionment compared well against the sensitivity simulations in terms of spatial impacts of emissions from source regions and the relative contributions for each emission regions (tags) to ozone. The APCA tool provides information that is most policy relevant when assessing regional and emission sector contributi on to ozone formation compared to OSAT. When ozone is formed under VOC limited conditions due to biogenic VOC + anthropogenic NO X # then OSAT attributes it to the biogenic VO C sources. When ozone is formed under NO X # limited conditions due to biogenic VOC + anthropogenic NO X # then OSAT attributes it to the anthropogenic NO X # sources. APCA is designed to provide more control strategy relevant information and recognizes that th ere are source categorie s such as biogenics that can not be controlled so the model only at tributes ozone to bioge nics when it is due to the interaction of bi ogenic VOC + biogenic NO X # . In the case where ozone formed to biogenic VOC + anthropogenic NO X # under VOC-limited conditions, OSAT attributes it to biogenic VOC, but APCA redirects the attribution to anthropogenic NO X # . In NO X # limited conditions both OSAT and APCA a ttribute the ozone to anthropogenic NO X # (ENVIRON 2008). # 4 2 Limitations Source apportionment estimates are as good as the inputs to the photochemical model. Any deficiencies with the emissions or meteorological inputs may lead to source contribution estimates that may not fully ch aracterize the source contribution mix at a receptor location. This application used a mini mum of a complete year of meteorology to capture the variety of ozone formation re gimes. However, it is possible that the meteorology used for these model applications may not represent all ozone formation regimes at every individual receptor lo cation in the continental United States. # 5 3 Derivation of Contribution Estimate 3.1 Primary Standard The steps used to estimate the source cont ribution at each receptor location for the primary 8-hr ozone NAAQS are shown below. More details on the model application methodology are available in the next subsecti on of this document. The policy relevant threshold is defined as the leve l of the new 8-hr ozone NAAQS. 1. Receptor locations are defined as ozone monitors in the photochemical modeling domain with a 2006-2008 design value exceeding the new 8-hr ozone NAAQS 2. 8-hr averaged source contributions rela ted to the 8-hr average daily maximum model estimate at these receptor locations are extracted from model output files 3. Identify high modeled days at each recep tor: predicted 8-hr max ozone > policy relevant threshold 4. Average daily 8-hr maximum contributions over all days with modeled ozone > policy relevant threshold at each receptor 5. The final contribution estimate is an 8-hr average with units of parts per billion (ppb) 3.2 Secondary Standard The steps used to estimate the final source contribution at each receptor location for the secondary ozone NAAQS are shown below. 1. Receptor locations are defined as ozone monitors in the photochemical modeling domain that were in operation during the time period modeled. 2. Daily index, monthly index, and the 3 m onth sum W126 ozone estimates at these receptor locations are extracted from standard model output files # 6 3. “Pseudo-output” files are gene rated for each source region (or tag) by subtracting the source region hourly ozone contribu tion estimate from the standard model hourly ozone estimate 4. Daily index, monthly index, and the 3 m onth sum W126 ozone estimates at these receptor locations are extracted from “pseudo” model output files 5. Identify the highest 3 month sum based on standard model output at each monitor location 6. The source area (tag) contribution is the difference between the highest 3 month sum estimated from the standard m odel output and the corresponding 3 month sum estimated from the “pseudo” model output for that source area 7. The final contribution estimat e is a W126 weighted 3 month sum in units of ppmhours # 7 4 Methodology Details Additional information is provided in this se ction regarding the fina l source contribution estimate from each source area to each recep tor. Also, information is given about the selection of source areas, emission prepar ation, photochemical model application, meteorological inputs, and photochemi cal model performance evaluation. 4.1 Identifying Violating Monitors (Receptors) Receptors are defined as indivi dual model grid cells that c ontain a monitor with a design value for the 2006 to 2008 time period that is greater than the level of the 8-hr ozone NAAQS. Design values are estimated usi ng methods described in 40 CFR part 50 Appendix P for a 75 ppb 8-hr ozone NAAQS and the proposed revision to Appendix P for alternative lower levels of the 8-hr ozone NAAQS. 4.2 Selection of Sources: Counties The sources selected for tracking with s ource apportionment include emissions from specific selected counties. Specific counties we re selected if they comprised part of a CSA or CBSA that had a violating monito r for the new 8-hr ozone NAAQS. Counties tracked with source apportionm ent are shown in Figure 1. Each county is color coded to correspond to the modeling domain used for tracking that partic ular source area. Figure 1 . Sources selected for tracki ng with source apportionment # 8 Additional counties were identified for tr acking with source apportionment by U.S. EPA Regional offices. The emissions tracked with source apportionment for each county include all VOC and NOX emissions except wild fires, prescribed fires, and biogenics. 4.3 Photochemical Model Application The CAMx photochemical model is applied fo r at least one entire calendar year using multiple model domains to track source group emissions. Source group emissions are tracked for ozone contribution using th e APCA approach (ENVIRON 2008). CAMx version 5.01 is a freely available computer mo del that simulates the formation and fate of photochemical oxidants, primary and secondary PM concentrations, and air toxics, over regional and urban spatial scales for given input sets of meteor ological conditions and emissions (Nobel, McDonald-Buller et al . 2001; Baker and Scheff 2007; Russell 2008). CAMx includes numerous science modules th at simulate the emission, production, decay, deposition and transport of organic and inorga nic gas-phase and part icle-phase pollutants in the atmosphere. CAMx is applied with Regional Acid Deposition Model (RADM) aqueous phase chemistry (Chang, Brost et al. 1987), and Carbon Bond 05 (CB05) gasphase chemistry module (Gery, Whitten et al. 1989; ENVIRON 2008). All model domains (Table 1, Figure 1) were ap plied for the entire year of 2005 except for 12WUS1 and 12SEATTLE1, which wer only applied for 2006. The 12WUS2 domain was applied for both 2006 and 2005. All model domains are applied with a Lambert projection centered at (-97, 40) and true latitudes at 33 and 45. The specifications for each of the modeling domains are given in Table 1 and shown in Figure 1. Each domain is applied with square 12 km sized grid cells. Table 1. Model domain specifications (Cell size, X, and Y origins in units of km). Domain Name X ori g in Y ori g in # X cells # Y cells Cell size 12FLORIDA2 900 -1620 75 75 12 12SOUTH1 -444 -1620 140 90 12 12NE2 432 -288 156 108 12 12SE2 540 -972 120 72 12 12MW3 -288 -792 93 72 12 12WUS2 -2412 -972 170 150 12 12SEATTLE1 -2196 852 53 40 12 12OV1 468 -648 75 75 12 12UPMW1 -180 -36 114 75 12 12EUS1 -1008 -1620 279 240 12 12WUS1 -2412 -972 213 192 12 # 4.4 Emissions The emissions used for the photochemical modeling are based on the 2005 National Emission Inventory version 2 (modeling inventory scenario = 2005cm_05b) for stationary point, onroad and nonroad sour ces. Day specific biogenic emissions are # 9 estimated using hourly gridded day-specific meteorology. Other area sources were grown from the 2002 National Emission Inventory to approximate the level of emissions expected in 2005 (Strum 2008). Average day fi re emissions are used for this modeling, but were not tracked as part of any source area (county). Fire emissi ons are included as part of the non-tagged emissions in th e source apportionment modeling. Oil and gas related emissions in the NEI were replaced by more recent inventories made available by the Western Regional Air Partnership for certainStates in the western United States (BarIlan 2007). Table 2. Sectors Used in the Emissions Modeling Platform Platform Sector Tagged? 2005 NEI Sector Description and resolution of the data input to SMOKE IPM sector: ptipm Y Point 2005v2 NEI point source EGUs mapped to the Integrated Planning Model (IPM) model using the National Electric Energy Database System (NEEDS, 2006 version 3.02) database. Hourly files for continuous emission monitoring (CEM) sources areincluded only for the 2005 evaluation case. Dayspecific emissions for non-CEM sources created for input into SMOKE. Non-IPM sector: ptnonipm Y Point All 2005v2 NEI point source records not matched to the ptipm sector, annual resolution. Includes all aircraft emissions. Point source fire sector: avgfire N Fires Average wildfires and prescribed fires. Fire emissions based on average of 1996-2002. Agricultural sector: ag N Nonpoint NH 3 ## emissions from NEI nonpoint livestock and fertilizer application, county and annual resolution. Area fugitive dust sector: afdust N Nonpoint PM 10 ## and PM 2.5 ## from fugitive dust sources from the NEI nonpoint inventory (e.g., building construction, road construction, paved roads, unpaved roads, agricultural dust), county and annual resolution. Remaining nonpoint sector: nonpt Y Nonpoint Primarily 2002 NEI nonpoint sources not otherwise included in other SMOKE sectors, county and annual resolution. Also includes updated Residential Wood Combustion emissions and year 2005 non-California Western Regional Air Partnership (WRAP) oil and gas “Phase II” inventory. Includes portable fuel container emissions from OTAQ. Nonroad sector: nonroad Y Mobile: Nonroad Monthly nonroad emissions from the National Mobile Inventory Model (NMIM) using NONROAD2005 version nr05c-BondBase for all states except California. Monthly emissions for California created from annual emissions submitted by the California Air Resources Board (CARB) for the 2005v2 NEI . locomotive, and non-C3 Y Mobile: Nonroad Year 2002 non-rail maintenance locomotives, and category 1 and category 2 commercial marine vessel # 10 Platform Sector Tagged? 2005 NEI Sector Description and resolution of the data input to SMOKE commercial marine: alm_no_c3 (CMV) emissions sour ces, county and annual resolution. Unlike prior platforms, aircraft emissions are now included in the ptnonipm sector and category 3 CMV emissions are now contained in the seca_c3 sector C3 commercial marine: seca_c3 Y Mobile : Nonroad Annual point source formatted year 2005 category 3 (C3) CMV emissions, developed for the EPA rule called “Control of Emissions from New Marine Compression-Ignition Engines at or Above 30 Liters per Cylinder”, usually described as the Area (ECA) study, originally called SO 2 ## (“S”) ECA. Onroad (NMIM-based) Y Mobile: onroad Three, monthly, county-level components: 1) Onroad emissions from NMIM using MOBILE6.2, other than for California. 2) California onroad, created using annual emissions submitted by CARB for the 2005v2 NEI. Biogenic: biog N N/A Hour-specific, grid cell-specific emissions generated from the BEIS3.14 model -includes emissions in Canada and Mexico. Other point sources not from the NEI: othpt N N/A Point sources from Cana da’s 2006 inventory and Mexico’s Phase III 1999 inventory, annual resolution. Also includes annual U.S. offshore oil 2005v2 NEI point source emissions. Other nonpoint and nonroad not from the NEI: othar N N/A Annual year 2006 Canada (province resolution) and year 1999 Mexico Phase III (municipio resolution) nonpoint and nonroad mobile inventories, annual resolution. Other onroad sources not from the NEI: othon N N/A Year 2006 Canada (province resolution) and year 1999 Mexico Phase III (municipio resolution) onroad mobile inventories, annual resolution. # Daily hour-specific biogenic emissions based on 2005 and 2006 meteorology data are generated using the BEIS 3.14 model. The BE IS model creates gridded, hourly emissions of CO, VOC, and NO X # from vegetation and soils for the United States, Mexico, and Canada (Guenther, Geron et al. 2000). The inputs to BEIS include shortwave downward solar radiation and temperature data at 10 meters which were obtained from the CMAQ meteorological input files and land-use da ta from the Biogenic Emissions Landuse Database, version 3 (BELD3). BELD3 data prov ides data on the 230 vegetation classes at 1 km resolution over most of North Am erica (Kinnee, Geron et al. 1997). All emissions were processed using the latest version of the Sparse Matrix Operator Kernel Emissions (SMOKE) Modeling Sy stem (Houyoux, Vukovich et al. 2000; UNC 2007). SMOKE has been enhanced with a feat ure that allows county or state specific emissions to be processed through the emissi ons model as specific unique pollutants. For # 11 example, rather than run SMOKE for specifi c counties or states then merge the output files into a model ready emissions file, a new input file called the ‘GSTAG’ file matches specific emissions based on FIPS codes to additional emissions species that are tracked in the source apportionment photochemical mode l. This type of approach to source apportionment emissions processing is favorab le because it is effi cient in terms of processing time (compared to running SMOKE for each specific source group individually) and resu lts in precursor emissions sp ecific to the source group. The alternative is using a gridded “mask” field to define source groups, which has much less specificity about allocating emissions to the correct county when multiple county boundaries fall within the same grid cell. Total county emissions of NO X # and VOC are presented in tabular form in the Appendix. Emission totals are only shown for countie s selected to be tracked with source apportionment for contribution to re ceptor locations of interest. 4.5 Meteorological Inputs The gridded meteorological input data for the entire year of 2005 were derived from simulations of the Pennsylvania State Univ ersity / National Center for AtmosphericResearch Mesoscale Model. This model, commonly referred to as MM5, is a limitedarea, nonhydrostatic, terrain-foll owing system that solves fo r the full set of physical and thermodynamic equations which govern atmospheric motions. Meteorological model input fields were prepared separately for each of the three domains shown in Figure 2 using MM5 version 3.7.4. Meteorological mode l output for the 36 km continental U.S. domain and 12 km eastern U.S. and 12 km western U.S. are translated to photochemical modeling domains shown in Figure 2 and Ta ble 3. Meteorological modeling domains are several grid cells larger in the X and Y domain than the photochemical model domains. The photochemical model inputs for these domai ns were windowed to match the smaller 12 km domains listed in Table 1. Table 3. Geographic elements of domain s used in photochemical modeling. Photochemical Modeling Configuration National Grid Western U.S. Fine Grid Eastern U.S. Fine Grid Map Projection Lambert Conformal Projection Grid Resolution 36 km 12 km 12 km Coordinate Center 97 deg W, 40 deg N True Latitudes 33 deg N and 45 deg N Dimensions 148 x 112 x 14 213 x 192 x 14 279 x 240 x 14 Vertical extent 14 Layers: Surface to 100 mil libar level (see Table II-3) # 12 Figure 2. Map of the photochemical modeling do main. The black outer box denotes the 36 km national modeling domain; the red inner box is the 12 km western U.S. grid; and the blue inner box is the 12 km eastern U.S. grid. All meteorological model runs were configur ed similarly. The selections for key MM5 physics options are shown below: • Pleim-Xiu PBL and land surface schemes • Kain-Fritsh 2 cumulus parameterization • Reisner 2 mixed phase moisture scheme • RRTM longwave radiation scheme • Dudhia shortwave radiation scheme Three dimensional analysis nudging for temper ature and moisture was applied above the boundary layer only. Analysis nudging for th e wind field was applied above and below the boundary layer. The 36 km domain nudging weighting factors were 3.0 x 10 4 # for wind fields and temperatures and 1.0 x 10 5 # for moisture fields. The 12 km domain nudging weighting factors were 1.0 x 10 4 # for wind fields and temperatures and 1.0 x 10 5 # for moisture fields. All sets of model runs were conducted in 5.5 day segments with 12 hours of overlap for spin-up purposes. All domains contained 34 ve rtical layers with an approximately 38 m deep surface layer and a 100 m illibar top. The MM5 and CAMx vertical structures are shown in Table 4 and do not vary by horiz ontal grid resolutio n. The meteorological outputs from all three MM5 sets were proce ssed to create model-ready inputs for CAMx using the MM5CAMx processor to derive the specific inputs. # 13 Table 4 . Vertical layer structur e (heights are layer top). CAMx Layers MM5 Layers Sigma P Approximate Height (m) Approximate Pressure (mb) 0 0 1.000 0 1000 1 1 0.995 38 995 2 2 0.990 77 991 3 3 0.985 115 987 4 0.980 154 982 4 5 0.970 232 973 6 0.960 310 964 5 7 0.950 389 955 8 0.940 469 946 6 9 0.930 550 937 10 0.920 631 928 11 0.910 712 919 7 12 0.900 794 910 13 0.880 961 892 14 0.860 1,130 874 8 15 0.840 1,303 856 16 0.820 1,478 838 17 0.800 1,657 820 9 18 0.770 1,930 793 19 0.740 2,212 766 10 20 0.700 2,600 730 21 0.650 3,108 685 11 22 0.600 3,644 640 23 0.550 4,212 595 12 24 0.500 4,816 550 25 0.450 5,461 505 26 0.400 6,153 460 13 27 0.350 6,903 415 28 0.300 7,720 370 29 0.250 8,621 325 30 0.200 9,625 280 14 31 0.150 10,764 235 32 0.100 12,085 190 33 0.050 13,670 145 34 0.000 15,674 100 # Before initiating the air quality simulations, it is important to identify the biases and errors associated with the meteorologi cal modeling inputs. The 2005 MM5 model performance evaluations used an approach which included a combination of qualitative and quantitative analyses to assess the ad equacy of the MM5 simulated fields. The qualitative aspects involved comparisons of the model-estimated synoptic patterns against observed patterns from historical weather chart archives. Additionally, the evaluations compared spatial patterns of es timated to observed monthly average rainfall and checked maximum planetary boundary laye r (PBL) heights for reasonableness. Qualitatively, the model fields closely matche d the observed synoptic patterns, which is not unexpected given the use of nudging. The operational evaluation included statistical comparisons of model/observed pairs (e.g., mean normalized bias, mean normalized # 14 error, index of agreement, root mean squa re errors, etc.) for multiple meteorological parameters. For this portion of the eval uation, five meteorological parameters were investigated: temperature, humidity, shor twave downward radiation, wind speed, and wind direction. The three individual MM5 ev aluations are describe d elsewhere (Baker 2009; Baker 2009; Baker 2009). It was ultimately determined that the bias and error values associated with all three sets of 2005 meteorological data we re generally within the range of past meteorologi cal modeling results that have been used for air quality applications. Meteorology generated from a prognostic meteor ological model is used as input to the photochemical model used to track emissions for source contribution. Most areas in the continental United States have severa l observed days above 70 ppb in 2005 and 2006 (Figure 3). The photochemical mode l is applied for the entire year of 2005 for the central and eastern United States and for the en tire years of 2005 and 2006 for the western United States. This is done to capture meteorological conditions conducive of ozone formation and account for meteorological factors that drive elevated ozone concentrations. Figure 3 . Number of days in each county with monitored ozone over 70 ppb 4.6 Initial and Boundary Conditions Annual continental United States simulations using 36 km sized grid cells (see Figure 2) for calendar years of 2005 and 2006 are us ed to supply hourly boundary condition information for each of the 12 km modeli ng domains. The lateral boundary and initial species concentrations are provided by a th ree-dimensional global atmospheric chemistry model, the GEOS-CHEM model (standard version 7-04-11). Th e global GEOS-CHEM model simulates atmospheric chemical and physical processes driven by assimilated meteorological observations from the NAS A’s Goddard Earth Observing System (GEOS). This model was run for 2005 with a grid resolution of 2.0 degree x 2.5 degree (latitude-longitude) and 30 vertical layers up to 100 mb. The predictions were used to provide one-way dynamic boundary conditions at three-hour interval s and an initial concentration field for the 36-km CAMx simu lations. The 36 km coarse grid modeling was used as the initial /boundary state for all subsequent 12 km grid modeling scenarios. # 15 5 Operational Model Performance Description Model estimates are compared to observati ons of ozone collected during 2005 and 2006. Ozone data from the AIRS Network is compared to model predictions to estimate operational model performance. Metrics used to describe model performance include mean bias and gross error (Boylan and Russell 2006). The bias and er ror metrics describe performance in terms of meas ured concentration units. The best possible performance is when the metrics approach 0. Bias is es timated as prediction-observation meaning a positive number might suggest a tendency to ward over-prediction and a negative value might suggest a tendency toward under-prediction. Scatter-plots of all daily 8- hr ozone maximum prediction-ob servation pairs and spatial plots of average bias for model predicted ozone greater than 70 ppb are shown for each modeling domain in Appendix B. # 16 6 References Baker, K., Dolwick, P. (2009). Meteorological Modeling Performance Evaluation for the Annual 2005 Continental U.S. 36-km Domain Simulation, US Environmental Protection Agency OAQPS. Baker, K., Dolwick, P. (2009). Meteorological Modeling Performance Evaluation for the Annual 2005 Eastern U.S. 12-km Domain Simulation. RT P, US Environmenta l Protection Agency OAQPS. Baker, K., Dolwick, P. (2009). Meteorological Modeling Performance Evaluation for the Annual 2005 Western U.S. 12-km Domain Simulation. U. EPA, US Environmental Protection Agency OAQPS. Bar-Ilan, A., Friesen, R., Pollack, A., Hoats, A. (2007). WRAP area source emissions inventory projections and control strategy evaluation phase II. C. P. We stern Governor's Association, Suite 200, Denver, CO 80202, ENVIRON International Corporation. Boylan, J. W. and A. G. Russell (2006). "PM and light extinction model p erformance metrics, goals, and criteria for three-dimensional air qu ality models." Atmospheric Environment 40(26): 4946-4959. Chang, J. S., R. A. Brost, et al. (1987). "A 3-DIMENSIONAL EULERIAN ACID DEPOSITION MODEL - PHYSICAL CONCEPTS AND FORMULATION." Journal of Geophysical Research-Atmospheres 92(D12): 14681-14700. Dunker, A. M., G. Yarwood, et al. (2002). "Comparison of source apportionment and source sensitivity of ozone in a three-dimensional air quality model." En vironmental Science & Technology 36(13): 2953-2964. ENVIRON (2008). User's Guide Co mprehensive Air Quality Mode l with Extensions. Novato, ENVIRON International Corporation. Gery, M. W., G. Z. Whitten, et al. (1989). "A PHOTOCHEMICAL KINETICS MECHANISM FOR URBAN AND REGIONAL SCALE COMPUTER MODELING." Journal of Geophysical Research-Atmospheres 94(D10): 12925-12956. Guenther, A., C. Geron, et al . (2000). "Natural emissions of non-methane volatile organic compounds; carbon monoxide, and oxides of nitrogen from North America." Atmospheric Environment 34(12-14): 2205-2230. Houyoux, M. R., J. M. Vukovich, et al. (2000). "Emission inventory development and processing for the Seasonal Model for Regional Air Quality (SMRAQ) project." Journal of Geophysical Research-Atmospheres 105(D7): 9079-9090. Kinnee, E., C. Geron, et al. (1997). "United States land use inventory for estimating biogenic ozone precursor emissions." Ecological Applications 7(1): 46-58. # 17 Nobel, C. E., E. C. McDonald-Buller, et al. (2001). "Accounting for spatial variation of ozone productivity in NOx emission trading. " Environmental Science & Technology 35(22): 4397- 4407. Strum, M., Houyoux, M., Mason, R. (2008). Tec hnical Support Document: Preparation of Emissions Inventories For the 2002-based Platform, Versio n 3, Criteria Air Pollutants. U. S. E. P. Agency. Research Triangle Park, NC. UNC (2007). SMOKE v2.3.2 User's Manual. Chapel Hill, University of North Carolina Institute of the Environment. Yarwood, G., Stoeckenius, T.E., W ilson, G., Morri s, R.E., Yocke, M.A. (1996). Development of a methodology for source appo rtionment of ozone concen tration estimates from a photochemical grid model . 98th AWMA Annual Me eting, Nashville, TN. ## APPENDIX A SOURCE AREA EMISSIONSFIPS State County NOX(TPY) VOC(TPY) 1001 AL Autauga 5,057 1,631 1003 AL Baldwin 9,362 10,925 1007 AL Bibb 941 821 1009 AL Blount 2,499 2,005 1017 AL Chambers 1,838 1,539 1021 AL Chilton 2,594 2,011 1027 AL Clay 911 580 1033 AL Colbert 20,171 2,986 1037 AL Coosa 796 830 1043 AL Cullman 3,508 3,819 1051 AL Elmore 2,504 3,380 1055 AL Etowah 6,180 4,107 1061 AL Geneva 1,170 1,197 1063 AL Greene 9,043 1,021 1065 AL Hale 1,000 912 1067 AL Henry 1,044 1,039 1069 AL Houston 4,311 4,585 1073 AL Jefferson 57,582 28,053 1077 AL Lauderdale 4,120 4,153 1079 AL Lawrence 4,985 2,000 1081 AL Lee 4,468 3,730 1083 AL Limestone 4,542 3,927 1085 AL Lowndes 1,626 1,124 1087 AL Macon 1,639 1,304 1089 AL Madison 11,414 10,310 1095 AL Marshall 3,519 5,160 1097 AL Mobile 42,420 14,815 1101 AL Montgomery 11,536 9,704 1103 AL Morgan 8,514 4,496 1113 AL Russell 4,814 2,032 1115 AL St Clair 6,306 3,199 1117 AL Shelby 38,427 7,393 1119 AL Sumter 2,471 1,082 1121 AL Talladega 4,289 3,815 1125 AL Tuscaloosa 9,871 7,699 1127 AL Walker 16,553 3,043 1133 AL Winston 1,263 1,467 4001 AZ Apache 26,352 3,354 4003 AZ Cochise 15,989 6,434 4005 AZ Coconino 45,933 7,505 4007 AZ Gila 1,856 4,404 4009 AZ Graham 996 1,613 4011 AZ Greenlee 469 199 4012 AZ La Paz 3,003 2,407 4013 AZ Maricopa 99,446 88,995 4015 AZ Mohave 12,716 12,241 4017 AZ Navajo 24,950 5,008 4019 AZ Pima 30,349 29,506 4021 AZ Pinal 12,425 7,395 4023 AZ Santa Cruz 1,496 1,427 4025 AZ Yavapai 14,238 7,086 4027 AZ Yuma 9,211 6,800 5007 AR Benton 11,161 6,282 5009 AR Boone 1,282 1,636 5025 AR Cleveland 777 416 5035 AR Crittenden 5,824 3,824 5045 AR Faulkner 3,829 4,714FIPS State County NOX(TPY) VOC(TPY) 5053 AR Grant 783 799 5069 AR Jefferson 23,253 3,053 5079 AR Lincoln 991 594 5085 AR Lonoke 3,416 2,621 5101 AR Newton 245 824 5105 AR Perry 347 640 5113 AR Polk 871 1,088 5119 AR Pulaski 18,407 18,551 5125 AR Saline 2,950 2,471 5131 AR Sebastian 5,285 4,141 5143 AR Washington 7,318 6,684 5145 AR White 6,196 2,965 6001 CA Alameda 43,316 26,321 6003 CA Alpine 194 219 6005 CA Amador 2,016 1,744 6007 CA Butte 9,199 7,004 6009 CA Calaveras 1,873 3,125 6011 CA Colusa 4,036 1,643 6013 CA Contrasta 37,566 19,608 6015 CA Del Norte 2,510 1,279 6017 CA El Dorado 3,843 6,001 6019 CA Fresno 41,167 23,906 6021 CA Glenn 4,081 1,776 6023 CA Humboldt 15,011 5,281 6025 CA Imperial 13,554 6,949 6027 CA Inyo 1,857 1,650 6029 CA Kern 89,387 32,413 6031 CA Kings 10,565 3,634 6033 CA Lake 2,693 4,158 6035 CA Lassen 2,165 2,079 6037 CA Los Angeles 287,426 175,408 6039 CA Madera 12,180 4,684 6041 CA Marin 6,863 6,227 6043 CA Mariposa 713 1,737 6045 CA Mendocino 15,058 4,592 6047 CA Merced 20,261 7,360 6049 CA Modoc 1,348 1,043 6051 CA Mono 1,088 923 6053 CA Monterey 16,655 12,966 6055 CA Napa 4,230 3,889 6057 CA Nevada 5,027 4,541 6059 CA Orange 64,995 56,760 6061 CA Placer 14,130 9,597 6063 CA Plumas 11,422 2,592 6065 CA Riverside 67,696 33,171 6067 CA Sacramento 30,405 25,275 6069 CA San Benito 4,577 1,704 6071 CA San Bernardino 121,128 45,581 6073 CA San Diego 78,452 66,071 6075 CA San Francisco 32,180 13,083 6077 CA San Joaquin 38,612 15,970 6079 CA San Luis Obispo 16,025 8,428 6081 CA San Mateo 19,342 13,466 6083 CA Santa Barbara 53,349 14,680 6085 CA Santa Clara 38,142 31,503 6087 CA Santa Cruz 8,028 7,917 6089 CA Shasta 13,646 8,011FIPS State County NOX(TPY) VOC(TPY) 6091 CA Sierra 371 1,133 6093 CA Siskiyou 7,191 3,422 6095 CA Solano 17,204 9,494 6097 CA Sonoma 14,128 11,506 6099 CA Stanislaus 20,311 11,390 6101 CA Sutter 7,141 3,417 6103 CA Tehama 6,900 2,816 6105 CA Trinity 1,093 1,197 6107 CA Tulare 17,430 11,580 6109 CA Tuolumne 3,079 4,114 6111 CA Ventura 32,980 19,917 6113 CA Yolo 9,903 5,366 6115 CA Yuba 2,838 2,432 8001 CO Adams 23,905 10,642 8005 CO Arapahoe 12,935 14,482 8007 CO Archuleta 529 760 8013 CO Boulder 12,829 9,485 8014 CO Broomfield 1,643 1,103 8019 CO Clear Creek 1,801 1,508 8031 CO Denver 21,058 18,279 8035 CO Douglas 7,661 6,610 8039 CO Elbert 1,218 978 8041 CO El Paso 22,309 20,644 8043 CO Fremont 3,380 1,228 8045 CO Garfield 9,738 3,040 8047 CO Gilpin 588 313 8051 CO Gunnison 922 1,454 8059 CO Jefferson 15,801 14,684 8067 CO La Plata 7,812 2,142 8069 CO Larimer 11,765 9,534 8077 CO Mesa 6,641 4,643 8081 CO Moffat 19,248 918 8083 CO Montezuma 1,174 1,448 8087 CO Morgan 7,561 1,334 8093 CO Park 563 1,178 8101 CO Pueblo 13,939 5,099 8103 CO Rio Blanco 3,773 657 8107 CO Routt 9,543 1,395 8119 CO Teller 559 1,149 8123 CO Weld 24,969 9,949 9001 CT Fairfield 26,532 26,655 9003 CT Hartford 23,700 22,776 9005 CT Litchfield 4,385 9,171 9007 CT Middlesex 6,883 6,921 9009 CT New Haven 21,665 24,411 9011 CT New London 11,029 14,040 9013 CT Tolland 4,059 5,133 9015 CT Windham 3,638 4,975 10001 DE Kent 8,329 4,921 10003 DE New Castle 25,493 13,358 10005 DE Sussex 20,993 8,598 11001 DC Washington 14,588 9,898 12001 FL Alachua 12,879 11,204 12003 FL Baker 2,083 1,427 12005 FL Bay 13,732 9,718 12009 FL Brevard 39,784 28,544 12011 FL Broward 65,830 49,993FIPS State County NOX(TPY) VOC(TPY) 12015 FL Charlotte 6,219 9,695 12019 FL Clay 4,749 6,559 12021 FL Collier 12,784 17,035 12023 FL Columbia 4,960 4,141 12031 FL Duval 60,455 37,372 12033 FL Escambia 22,503 15,727 12035 FL Flagler 4,844 3,980 12039 FL Gadsden 4,468 3,043 12041 FL Gilchrist 623 849 12053 FL Hernando 6,844 6,571 12055 FL Highlands 4,550 6,466 12057 FL Hillsborough 71,783 46,252 12059 FL Holmes 1,422 1,297 12061 FL Indian River 7,005 6,896 12065 FL Jefferson 1,906 1,475 12069 FL Lake 6,364 12,178 12071 FL Lee 26,038 29,382 12073 FL Leon 8,969 10,954 12081 FL Manatee 22,380 13,052 12083 FL Marion 12,936 15,296 12085 FL Martin 16,244 10,385 12086 FL Miami-Dade 79,694 83,167 12089 FL Nassau 8,396 3,760 12095 FL Orange 39,994 42,368 12097 FL Osceola 5,669 9,185 12099 FL Palm Beach 45,408 47,568 12101 FL Pasco 22,415 14,385 12103 FL Pinellas 35,221 35,961 12105 FL Polk 26,753 26,571 12109 FL St Johns 9,232 7,213 12111 FL St Lucie 9,746 10,477 12113 FL Santa Rosa 6,605 8,373 12115 FL Sarasota 13,108 15,940 12117 FL Seminole 11,723 18,389 12119 FL Sumter 4,176 4,116 12127 FL Volusia 21,257 22,539 12129 FL Wakulla 1,367 2,170 13013 GA Barrow 2,533 2,068 13015 GA Bartow 32,666 5,238 13021 GA Bibb 7,894 7,280 13025 GA Brantley 791 642 13029 GA Bryan 1,842 1,812 13033 GA Burke 1,310 1,243 13035 GA Butts 1,389 1,211 13045 GA Carroll 4,247 4,048 13047 GA Catoosa 2,822 2,658 13051 GA Chatham 29,315 12,805 13053 GA Chattahoochee 288 341 13055 GA Chattooga 1,746 1,469 13057 GA Cherokee 6,214 5,712 13059 GA Clarke 3,920 4,075 13063 GA Clayton 12,318 6,958 13067 GA Cobb 25,971 21,411 13073 GA Columbia 3,526 3,960 13077 GA Coweta 16,881 3,323 13079 GA Crawford 490 473 13083 GA Dade 1,431 922FIPS State County NOX(TPY) VOC(TPY) 13085 GA Dawson 715 895 13089 GA De Kalb 22,497 23,062 13097 GA Douglas 4,282 3,205 13103 GA Effingham 5,944 1,941 13113 GA Fayette 3,559 3,116 13117 GA Forsyth 4,753 4,654 13121 GA Fulton 39,064 35,206 13127 GA Glynn 8,178 4,757 13135 GA Gwinnett 22,648 24,947 13139 GA Hall 6,795 8,244 13143 GA Haralson 1,325 1,290 13145 GA Harris 1,542 1,642 13149 GA Heard 15,184 838 13151 GA Henry 8,919 5,062 13153 GA Houston 6,566 4,465 13159 GA Jasper 675 636 13169 GA Jones 1,276 956 13171 GA Lamar 775 827 13189 GA Mc Duffie 1,347 1,270 13191 GA Mc Intosh 2,306 2,554 13195 GA Madison 3,181 1,340 13197 GA Marion 366 388 13199 GA Meriwether 1,445 1,120 13207 GA Monroe 20,794 2,010 13213 GA Murray 1,656 1,447 13215 GA Muscogee 5,751 6,248 13217 GA Newton 3,333 3,168 13219 GA Oconee 1,438 1,413 13221 GA Oglethorpe 503 666 13223 GA Paulding 3,196 2,496 13225 GA Peach 1,697 1,548 13227 GA Pickens 1,073 1,243 13231 GA Pike 499 566 13233 GA Polk 1,648 1,740 13245 GA Richmond 13,061 7,970 13247 GA Rockdale 3,123 3,075 13249 GA Schley 190 276 13255 GA Spalding 2,215 3,100 13261 GA Sumter 1,739 1,291 13285 GA Troup 3,348 4,000 13289 GA Twiggs 867 752 13293 GA Upson 1,086 983 13295 GA Walker 2,125 2,247 13297 GA Walton 2,590 3,080 13313 GA Whitfield 7,092 6,071 16001 ID Ada 18,576 10,280 16015 ID Boise 719 1,212 16023 ID Butte 343 270 16027 ID Canyon 7,348 4,493 16041 ID Franklin 694 940 16045 ID Gem 1,243 636 16055 ID Kootenai 7,519 5,952 16073 ID Owyhee 652 610 16075 ID Payette 1,252 962 16081 ID Teton 401 982 17005 IL Bond 1,446 1,159 17007 IL Boone 2,331 3,012FIPS State County NOX(TPY) VOC(TPY) 17013 IL Calhoun 916 439 17019 IL Champaign 8,919 6,996 17027 IL Clinton 3,455 2,003 17031 IL Cook 174,358 121,322 17037 IL De Kalb 3,888 4,001 17043 IL Du Page 37,034 25,338 17049 IL Effingham 2,827 2,270 17053 IL Ford 1,205 1,120 17057 IL Fulton 3,814 1,915 17063 IL Grundy 3,873 2,418 17065 IL Hamilton 703 721 17073 IL Henry 7,122 2,787 17081 IL Jefferson 3,383 2,466 17083 IL Jersey 1,479 1,070 17089 IL Kane 16,659 12,338 17091 IL Kankakee 7,317 5,160 17093 IL Kendall 4,416 3,138 17097 IL Lake 29,527 29,437 17111 IL Mc Henry 9,583 7,925 17113 IL Mc Lean 9,648 5,887 17115 IL Macon 12,313 4,300 17117 IL Macoupin 2,083 2,017 17119 IL Madison 20,676 7,591 17123 IL Marshall 2,203 1,372 17127 IL Massac 12,034 2,014 17129 IL Menard 567 720 17131 IL Mercer 1,040 1,130 17133 IL Monroe 2,939 1,511 17143 IL Peoria 16,440 6,608 17147 IL Piatt 4,042 1,074 17157 IL Randolph 8,923 1,526 17161 IL Rock Island 6,053 5,371 17163 IL St Clair 10,184 8,303 17167 IL Sangamon 16,756 7,778 17175 IL Stark 490 579 17179 IL Tazewell 37,744 5,169 17197 IL Will 46,106 14,878 17201 IL Winnebago 10,624 10,330 17203 IL Woodford 2,201 2,184 18001 IN Adams 2,092 1,786 18003 IN Allen 16,173 13,482 18005 IN Bartholomew 3,058 2,455 18007 IN Benton 1,077 702 18011 IN Boone 3,505 2,692 18013 IN Brown 695 1,219 18015 IN Carroll 1,391 1,237 18019 IN Clark 5,749 3,203 18021 IN Clay 1,667 1,527 18029 IN Dearborn 13,242 1,836 18033 IN De Kalb 5,289 2,627 18035 IN Delaware 5,182 4,569 18039 IN Elkhart 10,210 7,566 18043 IN Floyd 8,147 2,191 18047 IN Franklin 1,220 1,300 18051 IN Gibson 32,699 1,970 18055 IN Greene 1,559 1,569 18057 IN Hamilton 7,956 7,263FIPS State County NOX(TPY) VOC(TPY) 18059 IN Hancock 3,140 2,469 18061 IN Harrison 3,172 1,612 18063 IN Hendricks 6,093 3,925 18065 IN Henry 3,373 2,399 18069 IN Huntington 3,089 2,327 18071 IN Jackson 3,429 2,495 18073 IN Jasper 20,104 2,461 18079 IN Jennings 6,368 1,353 18081 IN Johnson 4,701 4,186 18089 IN Lake 42,940 14,882 18091 IN La Porte 12,017 4,412 18095 IN Madison 5,447 4,996 18097 IN Marion 40,646 27,723 18099 IN Marshall 3,079 2,671 18105 IN Monroe 3,828 4,364 18107 IN Montgomery 3,804 2,324 18109 IN Morgan 6,594 2,925 18111 IN Newton 1,145 1,862 18113 IN Noble 3,643 2,884 18115 IN Ohio 551 249 18119 IN Owen 1,105 1,237 18123 IN Perry 2,699 1,253 18127 IN Porter 27,291 6,981 18129 IN Posey 11,763 1,721 18133 IN Putnam 4,703 2,070 18141 IN St Joseph 10,649 8,312 18143 IN Scott 1,355 1,355 18145 IN Shelby 3,603 1,999 18153 IN Sullivan 11,335 1,170 18157 IN Tippecanoe 8,677 5,153 18163 IN Vanderburgh 6,757 5,471 18165 IN Vermillion 13,902 1,102 18167 IN Vigo 17,609 4,744 18173 IN Warrick 18,055 2,446 18175 IN Washington 1,356 1,291 18179 IN Wells 1,529 1,398 18183 IN Whitley 2,355 1,952 19011 IA Benton 2,467 1,422 19013 IA Black Hawk 6,755 5,610 19015 IA Boone 4,182 1,574 19017 IA Bremer 1,365 1,508 19031 IA Cedar 3,076 1,513 19045 IA Clinton 10,640 3,251 19049 IA Dallas 3,099 2,312 19061 IA Dubuque 6,122 4,204 19075 IA Grundy 1,047 999 19077 IA Guthrie 746 600 19085 IA Harrison 2,563 1,414 19103 IA Johnson 5,881 5,980 19105 IA Jones 1,103 984 19113 IA Linn 16,168 7,903 19115 IA Louisa 6,763 791 19121 IA Madison 791 921 19127 IA Marshall 6,012 1,677 19129 IA Mills 4,028 785 19137 IA Montgomery 1,921 736 19139 IA Muscatine 10,419 2,451FIPS State County NOX(TPY) VOC(TPY) 19153 IA Polk 17,804 17,248 19155 IA Pottawattamie 23,399 5,501 19163 IA Scott 10,337 6,877 19169 IA Story 6,573 3,734 19177 IA Van Buren 512 468 19179 IA Wapello 8,563 1,193 19181 IA Warren 4,696 1,719 20005 KS Atchison 1,124 610 20015 KS Butler 10,444 2,944 20035 KS Cowley 4,305 1,334 20045 KS Douglas 8,943 4,579 20059 KS Franklin 2,805 1,224 20079 KS Harvey 2,519 1,378 20085 KS Jackson 1,336 584 20087 KS Jefferson 1,486 1,293 20091 KS Johnson 19,471 21,510 20103 KS Leavenworth 2,847 2,142 20107 KS Linn 32,793 622 20121 KS Miami 7,535 1,267 20149 KS Pottawatomie 35,337 1,155 20155 KS Reno 6,628 3,325 20173 KS Sedgwick 20,896 18,185 20177 KS Shawnee 10,780 6,378 20191 KS Sumner 4,470 1,447 20195 KS Trego 1,432 601 20209 KS Wyandotte 14,691 7,213 21005 KY Anderson 858 615 21007 KY Ballard 2,546 880 21011 KY Bath 1,049 684 21013 KY Bell 889 1,053 21015 KY Boone 10,641 4,189 21017 KY Bourbon 1,274 809 21019 KY Boyd 8,035 2,223 21023 KY Bracken 493 433 21029 KY Bullitt 3,140 2,851 21037 KY Campbell 4,052 2,554 21043 KY Carter 2,375 1,503 21047 KY Christian 3,937 3,009 21049 KY Clark 6,453 2,033 21059 KY Daviess 11,704 3,635 21061 KY Edmonson 571 912 21067 KY Fayette 9,140 9,838 21073 KY Franklin 2,133 1,687 21077 KY Gallatin 2,122 690 21081 KY Grant 2,746 1,260 21083 KY Graves 1,699 1,521 21089 KY Greenup 3,772 1,431 21091 KY Hancock 8,006 523 21093 KY Hardin 4,432 3,437 21101 KY Henderson 5,015 2,342 21103 KY Henry 1,313 969 21111 KY Jefferson 57,954 27,868 21113 KY Jessamine 1,931 2,221 21117 KY Kenton 6,235 4,834 21123 KY Larue 804 522 21139 KY Livingston 1,854 974 21145 KY Mc Cracken 24,187 5,298FIPS State County NOX(TPY) VOC(TPY) 21149 KY Mc Lean 476 386 21151 KY Madison 4,872 3,731 21163 KY Meade 3,021 1,963 21165 KY Menifee 165 261 21173 KY Montgomery 1,313 1,266 21179 KY Nelson 1,744 1,679 21185 KY Oldham 3,040 1,548 21191 KY Pendleton 3,482 611 21193 KY Perry 1,496 1,069 21195 KY Pike 3,564 2,521 21199 KY Pulaski 8,012 2,896 21203 KY Rockcastle 1,902 995 21209 KY Scott 3,773 1,895 21211 KY Shelby 2,664 1,901 21213 KY Simpson 1,461 990 21215 KY Spencer 416 534 21221 KY Trigg 1,285 1,417 21223 KY Trimble 4,940 443 21227 KY Warren 3,722 3,688 21233 KY Webster 12,021 557 21239 KY Woodford 3,105 1,625 22001 LA Acadia Par 7,200 2,700 22005 LA Ascension Par 14,288 7,324 22007 LA Assumption Par 1,841 797 22015 LA Bossier Par 5,301 3,386 22017 LA Caddo Par 11,505 10,705 22019 LA Calcasieu Par 52,705 15,219 22023 LA Cameron Par 8,087 3,574 22031 LA De Soto Par 18,084 2,022 22033 LA East Baton Roug 40,779 16,581 22037 LA East Feliciana 1,229 923 22045 LA Iberia Par 6,001 3,032 22047 LA Iberville Par 28,347 5,683 22051 LA Jefferson Par 24,170 16,262 22053 LA Jefferson Davis 3,201 2,327 22055 LA Lafayette Par 8,051 7,865 22057 LA Lafourche Par 5,794 4,753 22063 LA Livingston Par 3,441 3,729 22071 LA Orleans Par 38,986 11,934 22073 LA Ouachita Par 13,902 8,026 22075 LA Plaquemines Par 52,834 7,458 22077 LA Pointeupee Par 19,242 1,007 22087 LA St Bernard Par 8,058 3,520 22089 LA St Charles Par 21,868 6,057 22091 LA St Helena Par 1,722 668 22093 LA St James Par 8,992 2,233 22095 LA St John The Bap 64,272 3,951 22097 LA St Landry Par 7,277 3,816 22099 LA St Martin Par 3,563 3,103 22103 LA St Tammany Par 6,167 9,220 22109 LA Terrebonne Par 36,658 7,639 22111 LA Union Par 1,166 1,405 22113 LA Vermilion Par 12,700 3,684 22117 LA Washington Par 4,986 1,933 22119 LA Webster Par 3,707 2,164 22121 LA West Baton Roug 5,380 1,886 22125 LA West Feliciana 4,605 770FIPS State County NOX(TPY) VOC(TPY) 23001 ME Androscoggin 4,026 4,055 23005 ME Cumberland 13,668 13,195 23009 ME Hancock 4,100 5,839 23011 ME Kennebec 4,943 6,404 23013 ME Knox 5,409 3,965 23017 ME Oxford 3,981 5,237 23019 ME Penobscot 9,071 8,272 23023 ME Sagadahoc 1,847 3,143 23029 ME Washington 3,790 4,816 23031 ME York 8,618 9,208 24001 MD Allegany 7,915 3,058 24003 MD Anne Arundel 35,280 14,857 24005 MD Baltimore 36,605 23,555 24009 MD Calvert 2,696 3,265 24013 MD Carroll 6,669 4,750 24015 MD Cecil 4,488 4,438 24017 MD Charles 17,511 4,964 24021 MD Frederick 11,480 9,175 24023 MD Garrett 2,318 2,572 24025 MD Harford 7,730 7,686 24027 MD Howard 11,097 8,610 24029 MD Kent 1,073 1,927 24031 MD Montgomery 30,189 24,905 24033 MD Prince Georges 36,041 23,120 24035 MD Queen Annes 2,643 2,922 24043 MD Washington 9,135 6,096 24047 MD Worcester 16,457 5,850 24510 MD Baltimore 19,656 14,265 25001 MA Barnstable 22,564 15,087 25003 MA Berkshire 6,123 6,698 25005 MA Bristol 23,812 13,978 25007 MA Dukes 4,454 2,302 25009 MA Essex 22,551 19,477 25011 MA Franklin 3,971 5,267 25013 MA Hampden 15,783 11,970 25015 MA Hampshire 4,338 5,314 25017 MA Middlesex 43,611 41,006 25021 MA Norfolk 25,071 23,095 25023 MA Plymouth 11,244 14,316 25025 MA Suffolk 20,096 13,794 25027 MA Worcester 28,051 26,710 26005 MI Allegan 5,654 7,832 26015 MI Barry 1,882 3,238 26019 MI Benzie 1,004 2,521 26021 MI Berrien 8,968 8,097 26027 MI Cass 2,131 2,820 26037 MI Clinton 4,101 3,817 26043 MI Dickinson 3,620 1,938 26045 MI Eaton 6,222 4,118 26049 MI Genesee 17,560 15,604 26055 MI Grand Traverse 3,584 4,375 26063 MI Huron 3,978 2,712 26065 MI Ingham 14,591 8,990 26067 MI Ionia 2,626 2,796 26077 MI Kalamazoo 11,047 12,396 26079 MI Kalkaska 1,840 1,943 26081 MI Kent 24,363 24,922FIPS State County NOX(TPY) VOC(TPY) 26087 MI Lapeer 3,609 4,424 26089 MI Leelanau 1,695 3,092 26091 MI Lenawee 3,934 4,433 26093 MI Livingston 7,902 7,866 26099 MI Macomb 26,473 26,283 26101 MI Manistee 5,472 3,254 26105 MI Mason 1,896 2,865 26113 MI Missaukee 795 1,932 26115 MI Monroe 50,212 7,486 26121 MI Muskegon 11,842 7,407 26123 MI Newaygo 1,500 2,715 26125 MI Oakland 48,594 49,464 26139 MI Ottawa 27,318 10,347 26147 MI St Clair 30,127 7,200 26153 MI Schoolcraft 1,182 3,040 26155 MI Shiawassee 3,296 3,213 26159 MI Van Buren 3,627 4,247 26161 MI Washtenaw 15,202 12,789 26163 MI Wayne 91,246 65,955 26165 MI Wexford 1,594 2,253 27003 MN Anoka 12,250 13,242 27019 MN Carver 3,245 3,550 27025 MN Chisago 2,957 3,535 27037 MN Dakota 26,466 14,432 27053 MN Hennepin 72,542 40,466 27059 MN Isanti 1,845 2,261 27123 MN Ramsey 29,370 17,481 27139 MN Scott 5,982 5,117 27141 MN Sherburne 28,270 4,472 27163 MN Washington 22,184 9,044 27171 MN Wright 6,698 7,000 28001 MS Adams 3,380 2,352 28011 MS Bolivar 4,487 3,250 28023 MS Clarke 1,690 842 28029 MS Copiah 2,002 1,815 28033 MS De Soto 7,874 5,627 28039 MS George 719 799 28045 MS Hancock 3,457 2,894 28047 MS Harrison 21,493 10,839 28049 MS Hinds 12,854 12,182 28057 MS Itawamba 981 1,116 28059 MS Jackson 31,668 8,001 28069 MS Kemper 572 564 28075 MS Lauderdale 4,549 4,721 28081 MS Lee 4,712 5,055 28089 MS Madison 3,977 3,789 28093 MS Marshall 2,168 1,881 28115 MS Pontotoc 1,389 1,487 28121 MS Rankin 7,420 7,106 28127 MS Simpson 1,251 1,566 28131 MS Stone 864 677 28137 MS Tate 3,228 1,534 28143 MS Tunica 2,737 1,575 29013 MO Bates 1,853 1,158 29019 MO Boone 8,858 5,112 29021 MO Buchanan 7,424 3,337 29025 MO Caldwell 981 601FIPS State County NOX(TPY) VOC(TPY) 29031 MO Cape Girardeau 6,493 3,387 29037 MO Cass 4,025 3,283 29039 MO Cedar 604 1,249 29043 MO Christian 2,294 2,267 29047 MO Clay 8,547 7,407 29049 MO Clinton 1,073 1,013 29059 MO Dallas 612 811 29071 MO Franklin 15,570 4,243 29077 MO Greene 17,088 9,325 29083 MO Henry 7,935 2,388 29095 MO Jackson 38,847 22,640 29099 MO Jefferson 16,584 6,502 29101 MO Johnson 2,321 1,929 29107 MO Lafayette 3,456 2,114 29113 MO Lincoln 2,715 2,122 29133 MO Mississippi 3,777 1,223 29137 MO Monroe 1,125 1,247 29143 MO New Madrid 36,195 2,384 29157 MO Perry 2,615 1,377 29163 MO Pike 9,123 1,623 29165 MO Platte 14,154 3,938 29167 MO Polk 1,275 1,462 29175 MO Randolph 18,265 1,215 29177 MO Ray 2,960 1,166 29183 MO St Charles 20,679 9,509 29186 MO Ste Genevieve 6,327 1,277 29187 MO St Francois 2,142 2,048 29189 MO St Louis 55,163 42,728 29201 MO Scott 6,983 1,896 29209 MO Stone 1,060 3,033 29213 MO Taney 1,688 3,535 29219 MO Warren 1,849 1,833 29221 MO Washington 688 1,093 29225 MO Webster 3,066 2,228 29510 MO St Louis 22,268 12,988 30017 MT Custer 1,779 613 30021 MT Dawson 2,294 655 30025 MT Fallon 2,174 187 30083 MT Richland 3,700 592 30085 MT Roosevelt 2,306 456 30087 MT Rosebud 39,036 646 30109 MT Wibaux 986 316 31025 NE Cass 6,843 1,508 31053 NE Dodge 4,261 1,662 31055 NE Douglas 21,699 16,972 31109 NE Lancaster 28,975 10,181 31131 NE Otoe 12,027 902 31153 NE Sarpy 4,530 4,493 31155 NE Saunders 2,070 1,016 31177 NE Washington 1,696 1,032 32001 NV Churchill 2,007 1,607 32003 NV Clark 72,938 37,438 32005 NV Douglas 2,052 2,068 32007 NV Elko 8,294 2,928 32009 NV Esmeralda 99 138 32011 NV Eureka 1,493 362 32013 NV Humboldt 12,297 1,097FIPS State County NOX(TPY) VOC(TPY) 32015 NV Lander 1,085 540 32017 NV Lincoln 1,286 281 32019 NV Lyon 8,779 2,120 32021 NV Mineral 190 439 32023 NV Nye 1,052 1,214 32027 NV Pershing 2,296 1,109 32029 NV Storey 1,997 173 32031 NV Washoe 13,261 13,061 32033 NV White Pine 487 520 32510 NV Carson City 1,414 1,390 33001 NH Belknap 2,935 5,685 33005 NH Cheshire 2,550 4,524 33007 NH Coos 1,675 4,154 33009 NH Grafton 6,000 6,820 33011 NH Hillsborough 12,960 12,803 33013 NH Merrimack 12,716 6,909 33015 NH Rockingham 16,598 12,738 33017 NH Strafford 2,332 3,067 33019 NH Sullivan 2,138 3,442 34001 NJ Atlantic 12,145 11,561 34003 NJ Bergen 23,591 22,155 34005 NJ Burlington 15,322 11,542 34007 NJ Camden 15,371 9,288 34011 NJ Cumberland 5,837 4,868 34013 NJ Essex 21,311 12,309 34015 NJ Gloucester 12,133 7,021 34017 NJ Hudson 28,960 7,987 34019 NJ Hunterdon 3,819 3,791 34021 NJ Mercer 16,771 6,539 34023 NJ Middlesex 28,059 16,739 34025 NJ Monmouth 18,919 15,823 34027 NJ Morris 13,645 13,868 34029 NJ Ocean 16,113 18,741 34031 NJ Passaic 8,774 8,663 34033 NJ Salem 7,328 3,012 34035 NJ Somerset 7,845 7,328 34037 NJ Sussex 2,754 5,108 34039 NJ Union 20,202 10,526 34041 NJ Warren 5,351 3,932 35001 NM Bernalillo 23,199 18,248 35013 NM Dona Ana 9,634 6,822 35015 NM Eddy 14,772 2,923 35017 NM Grant 2,288 1,513 35025 NM Lea 31,794 2,254 35031 NM Mc Kinley 13,448 4,292 35039 NM Rio Arriba 18,855 2,295 35043 NM Sandoval 4,627 3,334 35045 NM San Juan 103,288 3,950 35049 NM Santa Fe 5,774 6,183 35057 NM Torrance 4,607 1,501 35061 NM Valencia 7,167 2,559 36001 NY Albany 17,534 12,854 36005 NY Bronx 14,061 21,882 36009 NY Cattaraugus 3,031 4,152 36011 NY Cayuga 3,757 4,259 36013 NY Chautauqua 18,693 7,130 36015 NY Chemung 3,413 3,577FIPS State County NOX(TPY) VOC(TPY) 36021 NY Columbia 2,436 3,291 36027 NY Dutchess 8,044 9,405 36029 NY Erie 32,876 35,630 36031 NY Essex 2,807 5,370 36035 NY Fulton 1,217 3,178 36037 NY Genesee 4,188 3,389 36039 NY Greene 5,640 3,141 36041 NY Hamilton 485 6,763 36043 NY Herkimer 3,575 4,573 36045 NY Jefferson 5,668 8,097 36047 NY Kings 25,287 47,314 36051 NY Livingston 2,521 3,341 36053 NY Madison 2,841 2,981 36055 NY Monroe 38,906 31,846 36057 NY Montgomery 3,591 3,139 36059 NY Nassau 34,137 38,869 36061 NY New York 34,443 39,053 36063 NY Niagara 11,030 9,844 36065 NY Oneida 7,535 10,521 36067 NY Onondaga 16,822 19,294 36069 NY Ontario 5,012 5,174 36071 NY Orange 18,555 12,821 36073 NY Orleans 1,406 2,064 36075 NY Oswego 5,324 6,390 36079 NY Putnam 5,322 6,462 36081 NY Queens 40,551 38,665 36083 NY Rensselaer 4,163 5,952 36085 NY Richmond 8,862 12,185 36087 NY Rockland 12,693 11,291 36091 NY Saratoga 6,261 9,521 36093 NY Schenectady 4,735 5,320 36095 NY Schoharie 1,601 2,280 36099 NY Seneca 1,525 3,544 36101 NY Steuben 5,235 4,473 36103 NY Suffolk 56,042 60,310 36111 NY Ulster 5,941 7,500 36113 NY Warren 4,807 5,696 36115 NY Washington 2,468 2,779 36117 NY Wayne 3,863 3,659 36119 NY Westchester 25,275 30,153 37001 NC Alamance 4,711 5,592 37003 NC Alexander 835 1,264 37007 NC Anson 1,394 1,358 37011 NC Avery 649 954 37021 NC Buncombe 12,517 8,560 37023 NC Burke 3,308 3,181 37025 NC Cabarrus 6,092 5,140 37027 NC Caldwell 2,512 2,687 37033 NC Caswell 730 693 37035 NC Catawba 23,480 5,635 37037 NC Chatham 5,915 3,005 37045 NC Cleveland 3,439 5,798 37051 NC Cumberland 9,091 9,332 37053 NC Currituck 4,239 2,711 37057 NC Davidson 6,408 5,317 37059 NC Davie 1,716 1,583 37063 NC Durham 8,309 9,444FIPS State County NOX(TPY) VOC(TPY) 37065 NC Edgecombe 2,253 2,289 37067 NC Forsyth 10,794 10,271 37069 NC Franklin 1,326 2,045 37071 NC Gaston 17,147 8,389 37075 NC Graham 212 351 37077 NC Granville 2,349 3,740 37079 NC Greene 701 682 37081 NC Guilford 14,826 21,834 37085 NC Harnett 3,167 3,315 37087 NC Haywood 6,694 2,725 37089 NC Henderson 3,085 4,139 37093 NC Hoke 951 1,341 37097 NC Iredell 8,433 8,224 37099 NC Jackson 1,602 1,730 37101 NC Johnston 7,437 6,689 37107 NC Lenoir 2,128 3,478 37109 NC Lincoln 1,946 2,402 37115 NC Madison 911 861 37117 NC Martin 7,232 1,131 37119 NC Mecklenburg 26,493 28,808 37127 NC Nash 4,647 5,866 37129 NC New Hanover 17,258 7,342 37135 NC Orange 5,295 3,913 37145 NC Person 27,566 1,291 37147 NC Pitt 4,101 5,362 37151 NC Randolph 4,498 5,056 37157 NC Rockingham 6,891 3,721 37159 NC Rowan 7,838 5,894 37167 NC Stanly 2,109 2,129 37169 NC Stokes 21,539 1,531 37171 NC Surry 3,264 3,193 37173 NC Swain 580 1,490 37175 NC Transylvania 958 2,971 37179 NC Union 4,650 5,409 37183 NC Wake 21,421 25,488 37197 NC Yadkin 1,655 1,375 37199 NC Yancey 804 828 38007 ND Billings 1,826 421 38053 ND Mc Kenzie 2,548 612 38055 ND Mc Lean 13,318 1,059 38057 ND Mercer 44,476 569 38065 ND Oliver 24,027 246 38089 ND Stark 3,365 1,268 38105 ND Williams 5,633 1,179 39003 OH Allen 7,788 5,329 39007 OH Ashtabula 14,228 8,135 39011 OH Auglaize 2,687 2,164 39013 OH Belmont 9,825 3,880 39015 OH Brown 2,403 1,744 39017 OH Butler 16,538 10,024 39019 OH Carroll 1,519 1,329 39021 OH Champaign 1,567 1,735 39023 OH Clark 5,544 5,102 39025 OH Clermont 35,403 6,071 39027 OH Clinton 2,732 2,113 39029 OH Columbiana 4,441 4,409 39035 OH Cuyahoga 49,165 49,648FIPS State County NOX(TPY) VOC(TPY) 39037 OH Darke 2,437 2,401 39041 OH Delaware 6,804 5,832 39045 OH Fairfield 5,764 4,415 39047 OH Fayette 2,240 1,503 39049 OH Franklin 37,577 36,689 39051 OH Fulton 4,471 2,736 39055 OH Geauga 3,070 4,815 39057 OH Greene 8,532 5,250 39061 OH Hamilton 48,326 31,486 39081 OH Jefferson 45,828 3,039 39083 OH Knox 2,168 2,802 39085 OH Lake 22,702 10,874 39087 OH Lawrence 3,465 2,768 39089 OH Licking 7,774 6,345 39093 OH Lorain 22,833 12,869 39095 OH Lucas 31,318 16,799 39097 OH Madison 3,125 2,772 39099 OH Mahoning 10,141 8,781 39101 OH Marion 3,593 2,244 39103 OH Medina 6,897 6,519 39109 OH Miami 3,981 4,145 39113 OH Montgomery 21,298 17,137 39117 OH Morrow 2,491 2,084 39123 OH Ottawa 5,137 4,484 39129 OH Pickaway 3,689 2,129 39133 OH Portage 7,364 7,367 39135 OH Preble 2,739 2,429 39141 OH Ross 6,731 2,854 39143 OH Sandusky 7,738 3,599 39151 OH Stark 12,637 14,152 39153 OH Summit 17,401 18,862 39155 OH Trumbull 13,455 7,528 39159 OH Union 2,401 2,315 39161 OH Van Wert 1,644 1,292 39165 OH Warren 7,370 6,156 39167 OH Washington 24,330 3,596 39173 OH Wood 9,619 5,272 40001 OK Adair 1,168 833 40017 OK Canadian 8,032 4,338 40021 OK Cherokee 1,090 1,952 40027 OK Cleveland 4,969 6,708 40031 OK Comanche 6,310 4,371 40037 OK Creek 5,385 3,272 40043 OK Dewey 3,059 350 40047 OK Garfield 7,734 1,913 40051 OK Grady 8,804 2,517 40071 OK Kay 6,542 2,347 40081 OK Lincoln 3,381 1,678 40083 OK Logan 4,145 1,481 40087 OK Mc Clain 3,905 1,557 40097 OK Mayes 19,969 2,612 40101 OK Muskogee 24,731 3,015 40103 OK Noble 16,755 1,059 40109 OK Oklahoma 27,777 27,110 40111 OK Okmulgee 3,006 1,607 40113 OK Osage 5,799 2,337 40115 OK Ottawa 2,153 2,023FIPS State County NOX(TPY) VOC(TPY) 40117 OK Pawnee 1,377 915 40121 OK Pittsburg 6,536 2,352 40125 OK Pottawatomie 3,063 2,779 40131 OK Rogers 25,690 3,894 40135 OK Sequoyah 4,293 2,595 40143 OK Tulsa 31,587 26,128 40145 OK Wagoner 3,339 2,915 40147 OK Washington 2,106 1,639 41005 OR Clackamas 12,077 16,254 41009 OR Columbia 4,275 2,221 41019 OR Douglas 7,677 7,795 41029 OR Jackson 8,099 10,608 41039 OR Lane 14,653 19,007 41047 OR Marion 11,103 14,314 41051 OR Multnomah 42,322 34,689 41053 OR Polk 2,224 3,017 41065 OR Wasco 2,907 2,800 41067 OR Washington 12,438 21,452 41071 OR Yamhill 4,603 3,972 42001 PA Adams 3,389 3,495 42003 PA Allegheny 57,115 28,969 42005 PA Armstrong 20,333 2,566 42007 PA Beaver 32,385 4,544 42011 PA Berks 18,147 11,257 42013 PA Blair 5,486 3,407 42017 PA Bucks 16,321 16,169 42019 PA Butler 7,562 5,985 42021 PA Cambria 6,427 3,935 42025 PA Carbon 3,188 3,449 42027 PA Centre 7,431 4,457 42029 PA Chester 16,701 13,089 42033 PA Clearfield 11,404 3,461 42035 PA Clinton 3,024 2,620 42039 PA Crawford 4,971 4,432 42041 PA Cumberland 13,722 6,987 42043 PA Dauphin 11,504 9,488 42045 PA Delaware 33,005 12,316 42049 PA Erie 12,667 8,478 42051 PA Fayette 4,516 4,315 42055 PA Franklin 5,809 4,850 42059 PA Greene 20,544 1,667 42063 PA Indiana 43,100 3,479 42069 PA Lackawanna 6,556 5,357 42071 PA Lancaster 17,412 16,450 42073 PA Lawrence 9,106 2,731 42075 PA Lebanon 5,994 4,464 42077 PA Lehigh 10,890 8,666 42079 PA Luzerne 10,513 9,434 42081 PA Lycoming 4,236 4,792 42085 PA Mercer 5,803 4,403 42089 PA Monroe 5,574 6,512 42091 PA Montgomery 23,215 24,252 42093 PA Montour 14,042 1,496 42095 PA Northampton 23,850 6,549 42099 PA Perry 2,838 1,994 42101 PA Philadelphia 36,639 19,587 42103 PA Pike 2,508 3,394FIPS State County NOX(TPY) VOC(TPY) 42107 PA Schuylkill 6,486 4,769 42111 PA Somerset 4,940 4,281 42117 PA Tioga 2,354 2,395 42125 PA Washington 16,235 6,499 42129 PA Westmoreland 16,323 9,970 42131 PA Wyoming 1,888 2,106 42133 PA York 33,697 9,848 44001 RI Bristol 857 1,337 44003 RI Kent 3,978 5,553 44005 RI Newport 2,014 3,452 44007 RI Providence 13,977 14,363 44009 RI Washington 5,633 4,259 45001 SC Abbeville 1,064 1,264 45003 SC Aiken 7,329 6,353 45007 SC Anderson 9,358 8,480 45015 SC Berkeley 21,360 8,164 45017 SC Calhoun 1,394 1,422 45019 SC Charleston 35,383 16,024 45021 SC Cherokee 3,377 2,682 45023 SC Chester 4,065 2,100 45025 SC Chesterfield 1,643 2,681 45029 SC Colleton 7,838 3,147 45031 SC Darlington 6,526 3,088 45035 SC Dorchester 7,564 3,813 45037 SC Edgefield 925 1,026 45039 SC Fairfield 1,883 2,065 45041 SC Florence 7,026 6,230 45045 SC Greenville 13,847 16,041 45055 SC Kershaw 2,422 3,118 45057 SC Lancaster 3,212 2,940 45059 SC Laurens 3,211 3,405 45063 SC Lexington 12,622 11,487 45071 SC Newberry 2,514 2,705 45073 SC Oconee 2,808 4,361 45077 SC Pickens 3,643 5,304 45079 SC Richland 21,510 13,244 45081 SC Saluda 803 1,087 45083 SC Spartanburg 13,650 12,233 45087 SC Union 1,536 1,326 45091 SC York 8,393 7,573 46033 SD Custer 1,118 583 46071 SD Jackson 893 505 46083 SD Lincoln 1,826 1,285 46087 SD Mcok 967 471 46099 SD Minnehaha 5,867 5,323 46103 SD Pennington 9,560 3,910 46125 SD Turner 685 407 47001 TN Anderson 16,342 9,174 47009 TN Blount 4,117 5,155 47011 TN Bradley 4,475 4,888 47013 TN Campbell 3,483 2,165 47015 TN Cannon 357 514 47019 TN Carter 1,474 2,139 47021 TN Cheatham 2,284 1,955 47029 TN Cocke 2,357 2,586 47037 TN Davidson 28,579 24,112 47043 TN Dickson 3,450 2,519FIPS State County NOX(TPY) VOC(TPY) 47047 TN Fayette 2,993 1,683 47057 TN Grainger 794 1,478 47063 TN Hamblen 5,086 4,198 47065 TN Hamilton 17,447 18,113 47073 TN Hawkins 15,664 3,350 47075 TN Haywood 3,300 1,144 47081 TN Hickman 2,517 1,114 47089 TN Jefferson 3,882 3,447 47093 TN Knox 19,852 19,374 47099 TN Lawrence 1,257 1,739 47105 TN Loudon 5,341 2,983 47107 TN Mc Minn 9,893 3,122 47111 TN Macon 1,629 698 47115 TN Marion 3,575 2,222 47119 TN Maury 5,132 3,896 47121 TN Meigs 704 914 47125 TN Montgomery 5,411 5,378 47139 TN Polk 738 930 47141 TN Putnam 4,412 3,180 47145 TN Roane 18,289 3,228 47147 TN Robertson 4,253 2,870 47149 TN Rutherford 9,474 7,209 47153 TN Sequatchie 509 524 47155 TN Sevier 3,129 6,218 47157 TN Shelby 50,255 32,469 47159 TN Smith 2,003 1,236 47161 TN Stewart 28,571 1,327 47163 TN Sullivan 21,426 13,036 47165 TN Sumner 13,726 4,211 47167 TN Tipton 3,541 2,244 47169 TN Trousdale 430 362 47171 TN Unicoi 915 969 47173 TN Union 848 1,121 47179 TN Washington 4,136 4,911 47187 TN Williamson 6,555 4,582 47189 TN Wilson 5,097 3,932 48013 TX Atascosa 6,170 1,781 48015 TX Austin 3,209 1,487 48019 TX Bandera 1,477 1,143 48021 TX Bastrop 2,915 2,302 48029 TX Bexar 56,084 42,317 48039 TX Brazoria 38,604 8,035 48043 TX Brewster 756 447 48055 TX Caldwell 2,704 4,304 48057 TX Calhoun 9,955 5,167 48061 TX Cameron 12,239 13,324 48071 TX Chambers 7,359 2,384 48073 TX Cherokee 2,309 2,081 48085 TX Collin 17,069 13,789 48091 TX Comal 7,780 3,865 48097 TX Cooke 2,973 4,391 48113 TX Dallas 69,930 56,198 48121 TX Denton 16,787 12,028 48139 TX Ellis 18,573 4,263 48141 TX El Paso 21,921 16,090 48147 TX Fannin 1,149 1,241 48149 TX Fayette 12,217 2,834FIPS State County NOX(TPY) VOC(TPY) 48157 TX Fort Bend 15,696 8,481 48161 TX Freestone 17,850 3,699 48167 TX Galveston 40,120 9,283 48175 TX Goliad 5,817 1,230 48181 TX Grayson 6,291 5,410 48183 TX Gregg 10,412 4,735 48187 TX Guadalupe 6,558 3,455 48199 TX Hardin 2,972 2,480 48201 TX Harris 171,697 96,358 48203 TX Harrison 16,043 2,980 48209 TX Hays 6,281 3,341 48213 TX Henderson 4,850 4,103 48215 TX Hidalgo 24,122 20,921 48221 TX Hood 2,140 1,529 48231 TX Hunt 3,614 3,193 48245 TX Jefferson 56,084 15,183 48251 TX Johnson 7,068 3,676 48257 TX Kaufman 4,933 3,481 48259 TX Kendall 1,076 1,384 48291 TX Liberty 4,736 3,268 48293 TX Limestone 14,704 2,242 48309 TX Mc Lennan 11,784 6,876 48321 TX Matagorda 12,595 5,609 48325 TX Medina 2,566 1,659 48331 TX Milam 14,744 2,454 48339 TX Montgomery 11,575 8,787 48349 TX Navarro 4,971 3,517 48355 TX Nueces 46,509 17,401 48361 TX Orange 13,114 3,059 48363 TX Palo Pinto 3,004 3,442 48365 TX Panola 13,545 7,585 48367 TX Parker 5,560 4,445 48397 TX Rockwall 1,905 1,698 48401 TX Rusk 22,953 1,913 48407 TX San Jacinto 1,245 1,309 48409 TX San Patricio 6,250 3,437 48423 TX Smith 9,809 6,763 48425 TX Somervell 271 522 48439 TX Tarrant 51,540 34,372 48449 TX Titus 26,543 1,876 48453 TX Travis 25,760 25,510 48459 TX Upshur 4,829 1,304 48469 TX Victoria 9,547 4,062 48471 TX Walker 3,254 2,276 48473 TX Waller 2,375 1,724 48491 TX Williamson 8,306 7,272 48493 TX Wilson 1,176 971 48497 TX Wise 11,060 7,066 49003 UT Box Elder 6,533 5,235 49005 UT Cache 3,236 3,513 49007 UT Carbon 5,832 1,278 49011 UT Davis 9,584 7,449 49013 UT Duchesne 2,123 1,173 49015 UT Emery 30,385 1,196 49021 UT Iron 4,155 2,310 49023 UT Juab 4,467 1,256 49027 UT Millard 29,923 2,052FIPS State County NOX(TPY) VOC(TPY) 49029 UT Morgan 3,356 764 49035 UT Salt Lake 32,265 25,327 49037 UT San Juan 1,381 1,369 49043 UT Summit 5,073 2,165 49045 UT Tooele 6,310 3,474 49047 UT Uintah 13,363 1,382 49049 UT Utah 12,054 11,877 49051 UT Wasatch 1,051 1,037 49053 UT Washington 4,787 4,471 49057 UT Weber 5,895 5,923 50003 VT Bennington 1,116 1,871 50005 VT Caledonia 1,352 1,601 50007 VT Chittenden 4,759 6,256 50009 VT Essex 370 1,616 50011 VT Franklin 1,529 2,247 50013 VT Grand Isle 284 2,280 50017 VT Orange 1,206 1,724 50027 VT Windsor 2,500 3,061 51003 VA Albemarle 4,838 3,549 51007 VA Amelia 778 654 51013 VA Arlington 5,235 3,276 51023 VA Botetourt 6,049 2,050 51033 VA Caroline 2,620 1,816 51036 VA Charles City 697 695 51041 VA Chesterfield 20,939 8,823 51043 VA Clarke 1,034 862 51045 VA Craig 120 231 51049 VA Cumberland 297 355 51053 VA Dinwiddie 2,440 1,376 51059 VA Fairfax 22,429 20,709 51061 VA Fauquier 4,577 3,535 51065 VA Fluvanna 4,326 736 51067 VA Franklin 2,178 2,174 51069 VA Frederick 4,969 5,160 51071 VA Giles 9,214 1,716 51073 VA Gloucester 1,280 2,113 51075 VA Goochland 2,161 1,423 51079 VA Greene 722 550 51083 VA Halifax 11,197 2,163 51085 VA Hanover 6,071 4,178 51087 VA Henrico 11,079 7,525 51093 VA Isle Of Wight 5,478 1,715 51095 VA James City 2,851 1,972 51097 VA King And Queen 436 605 51101 VA King William 3,381 644 51107 VA Loudoun 6,901 5,975 51109 VA Louisa 1,885 1,594 51113 VA Madison 698 797 51115 VA Mathews 450 866 51121 VA Montgomery 5,660 3,319 51127 VA New Kent 1,857 1,392 51131 VA Northampton 6,039 3,911 51139 VA Page 1,059 1,195 51143 VA Pittsylvania 3,976 2,638 51145 VA Powhatan 938 949 51149 VA Prince George 2,189 1,751 51153 VA Prince William 10,224 6,860FIPS State County NOX(TPY) VOC(TPY) 51161 VA Roanoke 5,153 6,688 51163 VA Rockbridge 2,714 1,885 51165 VA Rockingham 4,598 3,380 51167 VA Russell 8,706 1,094 51169 VA Scott 1,076 994 51177 VA Spotsylvania 4,223 3,212 51179 VA Stafford 4,308 2,594 51181 VA Surry 552 598 51183 VA Sussex 1,603 900 51187 VA Warren 1,612 1,823 51191 VA Washington 3,244 2,553 51197 VA Wythe 2,867 1,962 51199 VA York 10,158 2,462 51510 VA Alexandria 5,701 1,877 51520 VA Bristol 1,187 881 51540 VA Charlottesville 1,412 1,478 51550 VA Chesapeake 13,284 5,795 51570 VA Colonial Height 623 620 51590 VA Danville 2,585 1,489 51600 VA Fairfax 369 599 51610 VA Falls Church 189 252 51630 VA Fredericksburg 1,163 1,344 51650 VA Hampton 4,001 3,696 51660 VA Harrisonburg 1,768 1,266 51670 VA Hopewell 12,875 1,470 51683 VA Manassas 1,016 650 51685 VA Manassas Park 284 212 51700 VA Newport News 11,162 4,274 51710 VA Norfolk 18,926 5,593 51730 VA Petersburg 1,406 1,500 51735 VA Poquoson 292 359 51740 VA Portsmouth 7,430 2,085 51760 VA Richmond 8,113 6,926 51770 VA Roanoke 3,443 3,440 51775 VA Salem 1,213 896 51800 VA Suffolk 2,962 2,690 51810 VA Virginia Beach 11,216 9,169 51830 VA Williamsburg 369 311 51840 VA Winchester 1,202 828 53009 WA Clallam 17,760 4,072 53011 WA Clark 13,180 15,784 53015 WA Cowlitz 10,030 6,268 53029 WA Island 4,740 3,060 53031 WA Jefferson 4,774 2,097 53033 WA King 76,818 76,825 53035 WA Kitsap 6,901 8,030 53041 WA Lewis 21,481 4,893 53045 WA Mason 1,603 2,807 53053 WA Pierce 32,155 27,917 53057 WA Skagit 9,741 6,434 53059 WA Skamania 1,515 1,185 53061 WA Snohomish 22,697 24,226 53063 WA Spokane 16,380 19,477 53067 WA Thurston 8,289 10,769 53073 WA Whatcom 11,417 8,587 54003 WV Berkeley 7,828 3,053 54005 WV Boone 1,322 1,001FIPS State County NOX(TPY) VOC(TPY) 54009 WV Brooke 2,074 1,025 54011 WV Cabell 5,239 3,778 54015 WV Clay 325 394 54023 WV Grant 24,312 876 54025 WV Greenbrier 2,136 2,068 54027 WV Hampshire 831 2,096 54029 WV Hancock 3,845 1,053 54033 WV Harrison 23,291 2,593 54035 WV Jackson 2,876 1,620 54037 WV Jefferson 2,709 1,671 54039 WV Kanawha 23,091 9,410 54043 WV Lincoln 576 647 54049 WV Marion 2,616 1,802 54051 WV Marshall 36,079 1,091 54053 WV Mason 24,204 1,293 54061 WV Monongalia 12,593 3,495 54065 WV Morgan 1,054 540 54069 WV Ohio 2,970 1,955 54073 WV Pleasants 14,121 567 54077 WV Preston 3,990 1,332 54079 WV Putnam 37,461 1,923 54099 WV Wayne 6,732 1,534 54105 WV Wirt 142 416 54107 WV Wood 5,331 3,553 55003 WI Ashland 3,014 1,907 55009 WI Brown 24,023 11,499 55015 WI Calumet 2,117 2,091 55021 WI Columbia 11,509 4,369 55025 WI Dane 18,896 19,321 55027 WI Dodge 3,861 4,000 55029 WI Door 1,877 3,419 55037 WI Florence 240 3,028 55039 WI Fond Du Lac 4,441 4,218 55041 WI Forest 754 2,422 55049 WI Iowa 1,021 1,723 55055 WI Jefferson 4,770 4,416 55059 WI Kenosha 16,167 4,795 55061 WI Kewaunee 941 1,697 55071 WI Manitowoc 5,691 3,898 55073 WI Marathon 15,895 6,622 55079 WI Milwaukee 35,493 29,271 55083 WI Oconto 1,538 2,920 55085 WI Oneida 3,456 5,008 55087 WI Outagamie 9,650 7,119 55089 WI Ozaukee 4,485 3,354 55093 WI Pierce 2,219 1,940 55101 WI Racine 5,415 7,402 55105 WI Rock 6,982 6,873 55109 WI St Croix 4,609 3,538 55111 WI Sauk 2,843 3,863 55117 WI Sheboygan 10,860 5,508 55123 WI Vernon 5,807 2,048 55125 WI Vilas 1,087 5,909 55127 WI Walworth 4,219 5,159 55131 WI Washington 4,127 4,765 55133 WI Waukesha 12,087 15,487 56001 WY Albany 5,719 1,872FIPS State County NOX(TPY) VOC(TPY) 56005 WY Campbell 14,563 2,207 56007 WY Carbon 9,317 1,761 56009 WY Converse 21,371 1,216 56011 WY Crook 2,399 1,083 56019 WY Johnson 4,182 1,379 56021 WY Laramie 8,541 3,934 56023 WY Lincoln 22,856 1,481 56025 WY Natrona 7,766 3,389 56027 WY Niobrara 1,972 976 56031 WY Platte 23,234 1,153 56033 WY Sheridan 3,405 1,800 56035 WY Sublette 9,893 1,098 56037 WY Sweetwater 59,386 3,513 56039 WY Teton 1,083 2,165 56041 WY Uinta 5,678 1,345 56045 WY Weston 3,918 666 ## APPENDIX B MODEL PERFORMANCE # Northeast Domain (12NE2) # South domain (12SOUTH1) # Southeast domain (12SE2) # Florida domain (12FLORIDA2) # Ohio Valley (12OV1) # Midwest domain (12MW3) # Midwest domain (12MW3) # Western domain (12WUS1) – 2005 simulati on; 12WUS1 includes both 12WUS2 and 12SEATTLE1 # Western domain (12WUS1) – 2006 simulati on; 12WUS1 includes both 12WUS2 and 12SEATTLE1United StatesEnvironmental ProtectionAgencyOffice of Air Quality Planning and StandardsAir Quality Assessment DivisionResearch Triangle Park, NCPublication No. EPA-454/R-10-005November 2010